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1. Introduction

In continual learning a model is trained on sev-
eral tasks in a sequence. After training on one of
the tasks is finished, the training data for it is dis-
carded. However, the model should perform well on
all tasks. This problem is important for applications
such as robotics [1], where new tasks can appear dur-
ing the model usage and pre-training on all possible
tasks or re-training with all data is infeasible.

The goal of this thesis is to introduce an algo-
rithm for continual learning that performs well, but
can be easily implemented and reused. Suggested
method is called VadamVCL, and it can be used in-
stead of a usual optimization algorithm to enable
continual learning with a model. VadamVCL is sim-
ilar to Adam [2] algorithm that is extensively used
by the community and, therefore, easy to implement
based on the Adam implementation. VadamVCL
performs well despite its simplicity, and its general
form allows to connect it to other methods.

2. Related Work

Approaches to continual learning can be broadly
divided into two types: methods based on the exter-
nal memory and methods based on the modifications
to the training algorithm. Suggested method belongs
to the second type. Among similar methods are Vari-
ational Continual Learning (VCL) [3], Elastic Weight
Consolidation (EWC) [4] and Synaptic Intelligence
(SI) [5]. VCL is applicable only to Bayesian neural
networks (BNNs). Both EWC and SI require to add
term to the loss function that penalizes changes to
the model parameters based on the separately com-
puted measure of importance. VadamVCL uses sim-
ilar ideas, however, it does not require to define a
BNN or to change a loss function, and the penalties
does not require additional computation.

3. Preliminaries

3.1 Variational Continual Learning

Variational continual learning (VCL) [3] is an ap-
proach based on the idea that Bayesian inference can
be used as a general framework for continual learn-
ing. After training on one of the tasks is finished, all
model knowledge is incorporated in the posterior. If
this posterior is reused as a prior during the train-
ing for the next task, this knowledge is incorporated
into the model automatically. VCL main idea can be
summarized by the recursive formula:

p(θ|D1:T ) ∝ p(θ|D1:T−1)p(DT |θ), (1)

where T is the number of tasks, θ are model param-
eters and Dt is a dataset for the task t.

3.2 Vadam: Variational Inference Using
Weight-Perturbation in Adam

Adam [2] is an optimization algorithm that is
widely used for training neural networks and im-
plemented in all popular libraries. Vadam [6] is
a natural gradient method for Gaussian mean-field
variational inference that uses several approxima-
tions to make the implementation easier and more
similar to Adam. This way Vadam allows to per-
form variational inference for BNNs through the op-
timizer. One of the main differences in Vadam algo-
rithm implementation compared to Adam is weight-
perturbation - sampling of the model weights before
computing the gradients.

4. VadamVCL for Continual Learning

VadamVCL is based on the combination of VCL
[3] and Vadam [6]. The algorithm is derived by re-
placing a prior distribution in the Vadam derivation
with a previous task posterior distribution according
to the VCL equation 1. The method uses a Bayesian
neural network though it does not require a user to
define it. Bayesian neural networks allow to use a
Bayesian inference framework for continual learning
and provide uncertainty estimates for the model pa-
rameters. Uncertainty can be interpreted as a mea-
sure of how important a given parameter is for a
model to make a correct prediction.

4.1 Algorithm

Algorithm 1: VadamVCL algorithm for contin-

ual learning. All updates are point-wise. Differ-

ences from Adam are highlighted in blue.

1 for dataset Dt, N = |Dt| for the task t, t = 1, T do
2 m0 = 0, s0 = 0
3 if t == 1 then
4 µ∗ = 0,σ−2

∗ = λ

5 else

6 µ∗ = µ
(t−1)
last ,σ−2

∗ = s
(t−1)
last + (σ

(t−1)
∗ )−2

7 for k = 1,K, K - number of epochs do

8 θk = µk+ε/
√
sk + σ−2

∗ , ε ∼ N (ε|0, 1)
9 mk+1 =

β1mk + (1− β1)[N ĝ(θk)+(µk − µ∗)σ−2
∗ ]

10 sk+1 = β2sk + (1− β2)γN2 diag[H(θk)]

11 m̂k+1 = mk/(1− βk+1
1 )

12 ŝk+1 = sk/(1− βk+1
2 )

13 µk+1 = µk − η m̂k+1/(
√
ŝk+1 + σ−2

∗ )

14 Discard the dataset Dt

Here θ are model parameters, µ,σ2 are parame-
ters of the weights distribution, ∗ denotes parameters
of the previous posterior, ĝ is the estimated gradient,
H is the Hessian matrix, λ, β1, β2, η, γ are method
parameters.



Main differences from Adam are in the initializa-
tion of additional parameters (lines 4 and 6), weight-
perturbation (line 8), contribution from the previous
task posterior (line 9) and diagonal of the Hessian
(line 10).

4.2 Approximation to the Hessian and
Connection to EWC

The algorithm presented above uses diagonal of
the Hessian matrix that is slow to compute and re-
quires approximation. Two types of approximations
were considered: gradient magnitude (GM) and Gen-
eralized Gauss-Newton (GGN) [7].

GM approximation:

H(L(θ)) ≈ E
[∂L(xi, yi,θ)

∂θ

]
E
[∂L(xi, yi,θ)

∂θ

]T
. (2)

GGN approximation:

H(L(θ)) ≈ E
[(∂L(xi, yi,θ)

∂θ

)2]
. (3)

The difference in practice is whether the average
over the mini-batch is taken before computing the
square (GM) or after (GGN). GM approximation is
faster but less accurate than GGN.

If GM approximation is used, then line 10 in the
algorithm becomes sk+1 = β2sk+(1−β2)γN2ĝ2 and
differs from Adam only in γN2.

If GGN approximation to the Hessian is used with
the negative log likelihood loss, then Hessian is in
fact approximated with a Fisher information matrix.
It makes the method similar to EWC in this case,
since EWC works by penalizing parameter changes
using a Fisher information matrix [4].

5. Experiments
In this section we will demonstrate on the stan-

dard continual learning benchmarks that despite
VadamVCL simplicity it performs comparably to
other methods.

5.1 Permuted MNIST
During experiments with the MNIST dataset

gradient-magnitude approximation to the Hessian
was used because of its speed. For experiments with
Permuted MNIST the dataset received for each task
consists of images of MNIST digits which pixels have
undergone a fixed random permutation.

Figure 1: Results on the Permuted MNIST dataset.

VadamVCL performs on the Permuted MNIST
comparably to SI and EWC and worse than VCL in

the long run. The reason most probably is the un-
certainty estimates that are computed differently in
VCL and VadamVCL and involve approximation in
the case of VadamVCL.

5.2 Split MNIST
For this experiment MNIST digits dataset is split

into 5 pairs: 0/1, 2/3, 4/5, 6/7, 8/9, The dataset re-
ceived for each task is one of these pairs.

Figure 2: Results on the Split MNIST dataset. EWC
results are omitted because of its poor performance.

VadamVCL performs on this experiment better
than EWC and VCL and comparable to SI. The
likely reason of better performance is the usage of
multi-head network. It means that for each new task
there are new parameters on which performance on
the previous tasks does not depend. VadamVCL pe-
nalizes changes to previous parameters stronger than
other methods, but new parameters allow to get good
performance on new tasks that results in better per-
formance overall.

6. Conclusion
In this thesis we have introduced an algorithm

called VadamVCL for continual learning. It is easy
to implement and use, and results show that de-
spite the simplicity its performance is comparable
to other continual learning methods. The algorithm
also shows an interesting connection to EWC. Since
the method has a simple expression it allows for var-
ious improvements to the method to be done easily.
As the future work it is possible to try better approxi-
mations to the Hessian and better approximations to
the posterior instead of using mean-field variational
inference.
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Abstract

In continual learning a model is trained on several tasks in a sequence, and after
training on one of the tasks is finished, the training data for it is discarded.
However, the model should perform well on all tasks. In this thesis we introduce
an algorithm for continual learning called VadamVCL that makes use of variational
inference for continual learning. VadamVCL can be used instead of a usual
optimization algorithm to enable continual learning with a model. It is also
similar to Adam algorithm that is extensively used by the community and,
therefore, easy to implement based on the Adam implementation. VadamVCL
performance is comparable to the state of the art despite its simplicity, and its
general form allows to connect it to other methods.
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Chapter 1

Introduction

Continual or lifelong learning is a setting in which a model is required

to learn several tasks in a sequence. After training on one of the tasks

is finished, training data for this task is discarded. It is desired that the

model performance on the previously seen tasks does not decrease. The model

also should be able to reuse the knowledge both from the previous tasks to ease

learning of the new ones, and from the new ones to improve the performance on

the previous tasks. The main problem we am concerned with in this thesis is

catastrophic forgetting - drop in the performance on the previous tasks.

While humans are capable of learning during their lifetime, most of the cur-

rently popular machine learning methods are not capable of learning in a lifelong

manner. Neural networks that are the most popular approach in machine learning

these days are also prone to catastrophic forgetting in the continual learning set-

ting (Goodfellow et al., 2013). If a machine is working in a real-life environment

for a long time it will ultimately face many tasks during its operation time. Thus,

continual learning is essential to develop systems that can work in such settings.

The necessity for continual learning was motivated long time ago in application

to robotics (Thrun and Mitchell, 1995), because a robot might face a variety of

tasks during its interaction with the physical environment. Other potential appli-

cations are intelligent assistants and chat-bots (Chen and Liu, 2016). Continual

1



Chapter 1: Introduction 2

learning in general and continual learning with neural networks is described in

more detail in the chapter 2.

Bayesian inference provides a general framework for continual learning. (Nguyen

et al., 2017) Additionally, uncertainty estimates for the model weights are use-

ful for continual learning because they provide a convenient way to determine

the acceptable change rate for the weights. When it comes to neural networks,

Bayesian neural networks provide both the uncertainty estimates on the network

weights and allow to adapt Bayesian inference approach to continual learning.

However, existing solutions based on these ideas cannot be applied directly to a

usual neural network. An overview of the related topics is given in the chapter 3.

Suggested method is based on the combination of Vadam (Khan et al., 2018) and

Variational Continual Learning (VCL) (Nguyen et al., 2017) that are described

in the sections 3.3 and 3.4 respectively.

An easy to implement and build on algorithm speeds up the development of

new methods. In this thesis we suggest an optimization algorithm that can

make a model work in a continual learning setting simply by replacing

the optimization algorithm used. We call this algorithm VadamVCL. It is

similar to Adam (Kingma and Ba, 2014) algorithm that is extensively used by

the community and, therefore, easy to implement based on the Adam imple-

mentation. It does not require to define a Bayesian neural network or to change

a loss function.

VadamVCL is derived in the chapter 4. It requires Hessian approximation

and method results depend on the type of the approximation used. Explanation

of this problem is given in the section 4.3.2. Depending on the approximation it

is possible to establish connections to other continual learning methods and in

the section 4.3.2 we show connection to the Elastic Weight Consolidation (EWC)

(Kirkpatrick et al., 2017). VadamVCL was developed for neural networks, how-

ever since the algorithm in fact uses a Bayesian neural network, the resulting

network has the same limitations as modern Bayesian neural networks do. It

means that for now we can guarantee that the method is applicable to relatively
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small neural networks consisting of fully-connected layers.

Experiment results are given in the chapter 5. VadamVCL was tested on a

Gaussian mean estimation, 2D classification, Permuted and Split MNIST exper-

iments. The results show that the method performs comparably or better

than other continual learning methods despite its simplicity. Conclusion

and discussion are given in the chapter 6.

To sum up, the goal of this thesis was to introduce an algorithm for continual

learning that performs well, but can be easily implemented and reused.

As the result, we suggested a new method called VadamVCL that can be used

instead of a usual optimization algorithm to enable continual learning with a

model. Experiments confirmed that VadamVCL performance is comparable to

the state of the art despite its simplicity, and its general form allows to connect

it to other methods.



Chapter 2

Continual Learning

There has been a recent rise in the interest in continual learning. Because of

this, there is no commonly accepted terminology yet, and the setting described

below appears under the names of continual, lifelong or continuous learning

in the research. We will use the name ”Continual Learning” throughout this

thesis.

Continual learning is a setting in which data arrives continuously, and it

is not necessarily i.i.d. Tasks may change over time, and new tasks can emerge.

It is required that the model improves its performance on all tasks as new data

appears (transfer and reverse transfer learning), and performance on the old tasks

does not decrease (no catastrophic forgetting). Majority of the recently suggested

methods focuses on alleviating catastrophic forgetting and this is also the focus

of the method we describe.

Let us provide the motivation for continual learning. If the machine learn-

ing models are to be moved to the real-life settings they need to be capable of

adapting the continuously incoming stream of data. In real-life new tasks emerge

all the time, but at the same time it is necessary to preserve performance on

the previously seen tasks and ideally improve performance on them if new re-

lated information is presented. One of the examples is object recognition in a

continual learning setting (Lomonaco and Maltoni, 2017). For instance, consider

4
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a domestic robot. Pre-training such a robot beforehand on all possible tasks it

might encounter is infeasible. At the same time, re-training it for instance once

a day using all data with new data added would be slow and would require a

lot of storage for all available information. Simple training with newly arrived

data would result in catastrophic forgetting. In such cases continual learning can

provide a solution to this problem allowing to train a robot using only new data,

but preserving performance on the previously learned tasks.

To avoid the confusion, it is necessary to note that there are various settings

that appear to be similar to continual learning. Below is their comparison to

continual learning.

On-line learning (Bishop, 2006) refers to the type of learning when data points

are considered one at a time and are discarded after the model parameters are

updated. Additionally, in on-line learning only one task considered. This is not

the case of continual learning when the whole dataset for one of the tasks is

available at some point of time before it is discarded, and new tasks may appear.

Another similar setting is multi-task learning (Caruana, 1998). However, in

multi-task learning the model parameters are optimized jointly for all of the tasks

and data for all of them is always available, while in continual learning the model

is presented with tasks in the sequential manner and all data for only one of them

is available at a given moment in time.

One more related type of learning is meta learning (Lemke et al., 2015).

Similarly to continual learning it is applied to the set of tasks. However, it assumes

existence of two systems: a meta-learning system and a learning subsystem which

is not a requirement for continual learning.

Another closely related type of learning is transfer learning. Transfer learning

can be seen as a part of continual learning, while transfer learning on its own

does not result in continual learning because performance on the previous tasks

is not important for transfer learning.
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2.1 Definition

Since the interest in continual learning has re-emerged recently, there is no

commonly accepted strict definition of the term. Thus, we will describe the

setting we will use more precisely in this section.

Suppose we want to train a model on T tasks, where T is not known in advance

and is used to make the notation more convenient. Each task is characterized

by a dataset Dt, t = 1, T . There is no assumption of data being iid, and tasks

might be related or not related to each other. Datasets D1 = {xi, yi}N1 ,D2 =

{xi, yi}N2 , ...,DT = {xi, yi}NT
arrive in a sequence. After training on one of the

datasets is finished, it is discarded, and there is no access to it anymore. The

model is to be trained on the tasks one-by-one. It is desired that after training on

a new dataset Dt, t = 1, T performance on the previous D1,D2, ...Dt−1 is preserved

(no catastrophic forgetting) and knowledge from the previous tasks is transferred

to Dt. (Ideally, it should be transfered in both directions: from D1,D2, ...Dt−1 to

Dt and from Dt to D1,D2, ...Dt−1.)
In general tasks might be of a different nature, but we limit the setting and

use only the same type of tasks on the same types of data for one experiment,

e.g. only image classification problems.

One of the biggest concerns is such a setting is catastrophic forgetting that

was already mentioned. Catastrophic forgetting is a situation when a model was

trained on tasks D1, ...,Dt−1, and training on the task Dt results in the serious

drop in performance on the previous tasks. Neural networks, while being the

most popular method in machine learning these days, are especially prone to

catastrophic forgetting (Goodfellow et al., 2013).

2.2 Related Work

Current approaches to continual learning can be roughly divided into two

types. One of them uses some sort of memory either by explicitly saving some

data from the previous task, or through generative replay. Another approach
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is about modifying the training algorithm to preserve performance on previous

tasks. There are also methods that combine both of these approaches. We did

not use external memory for the suggested method, but it can be combined with

some form of memory.

In the work on the Elastic weight consolidation (EWC) (Kirkpatrick

et al., 2017) authors add to the loss l2 constraints weighed by the diagonal of

the empirical Fisher information matrix, one for each previous task. Fisher infor-

mation matrix is treated as a measure of importance of a given parameter. Our

method takes a different approach and does not modify the loss, but modifies the

training algorithm itself. However, resulting algorithm also penalizes changes to

the model parameters but uses uncertainty as a measure of importance.

Synaptic Intelligence (SI) (Zenke et al., 2017) similarly to to EWC uses

a measure of ”importance” to penalize changes to more important parameters.

It adds surrogate loss to the cost function consisting of a sum of l2 constraints

multiplied by the importance estimation based on a loss and parameters changing

rate. SI estimates importance of the parameters on-line and along the whole

learning trajectory. Our method is different from SI in the same way it is different

from EWC.

Gradient Episodic Memory (GEM) (Lopez-Paz et al., 2017) is an exam-

ple of a memory based method. It makes use of an external memory that stores

a subset of samples from observed tasks. GEM uses an update rule that projects

gradients for new samples in such a way that they would not increase loss for the

stored samples and allows backward transfer thanks to that. VadamVCL takes a

different approach and does not use an external memory at all.

Incremental Moment Matching (IMM) (Lee et al., 2017) constructs a

new Gaussian posterior for all seen tasks by either averaging the network param-

eters or doing Laplace approximation for the mixture of Gaussians. This method

takes a totally different approach from our method.

Related works based on the usage of variational inference for continual learning

will be introduced in the next chapter in the section 3.5.



Chapter 3

Variational Inference and

Continual Learning

The notation that is used throughout the thesis including this chapter is

described in detail in the chapter 4 in the section 4.1.

3.1 Bayesian Neural Networks

The method was developed with Bayesian Neural Networks (BNNs) (Neal,

2012) in mind. Though the suggested algorithm does not require a user to con-

struct a BNN, since Vadam allows to get distribution parameters through the

optimizer, it is necessary to introduce them to make the explanation clearer. Us-

age of Bayesian Neural Networks allows us to approach continual learning problem

in neural networks using Bayesian inference as a general framework for continual

learning (Nguyen et al., 2017).

The difference between Bayesian Neural Networks and vanilla neural networks

is in the prior introduced over the weights in the case of BNNs. This is useful

because plain neural networks are prone to over-fitting and does not provide

uncertainty estimates over its decisions that are especially useful in some spheres,

e.g. in medicine. BNNs can be trained using variational Bayesian learning by

8



9 3.2 Mean-Field Variational Inference

minimizing expected lower bound (ELBO) (Blundell et al., 2015).

3.2 Mean-Field Variational Inference

Variational inference (Murphy, 2012) is one of the approximate inference

methods. The basic idea is to pick an approximation q(θ) from some tractable

family and to make it as close as possible to the true posterior distribution p(θ|D).

In this work we use a mean-field approximation to the posterior (Murphy,

2012). The idea of mean-field variational inference is to approximate posterior

with a product of distributions of the simpler form:

p(θ|D) ≈ q(θ) =
∏

i

qi(θ) (3.1)

In the case of a multivariate Gaussian distribution that will be used through-

out the thesis it means that approximation is done with q(θ) = N (θ|µ,σ2I).

The prior that will be used is p(θ) = N (θ|0, 1
λ
I).

3.3 Vadam

Vadam (Khan et al., 2018) is one of the algorithms that was used as a basis

of the suggested approach to continual learning. Vadam is not concerned with

continual learning on its own. It is a general method for mean-field variational

inference that can be used for training neural networks in the same way as other

popular optimizers, such as Adam or RMSprop. Vadam is developed based on

a natural momentum method applied to the mirror descent algorithm and uses

momentum term and bias-corrections like Adam. Since Vadam allows to per-

form variational inference through the optimizer, it is useful for writing a general

optimizer for continual learning that makes use of variational inference.

Adam (Kingma and Ba, 2014) is a popular optimization algorithm that is of-

ten used for training neural networks. It is implemented in most of the machine
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learning libraries, that means that a method similar to it can be easily imple-

mented and used based on the available solutions. Vadam is similar to Adam in

its updates, as it is shown in the table 3.1. (Detailed explanation of the notation

is given in the section 4.1.)

Adam Vadam

θk = µk

mk+1 = β1mk + (1− β1)[ĝ(θk)]

sk+1 = β2sk + (1− β2)[ĝ(θk)]
2

m̂k+1 =
mk

1− βk+1
1

ŝk+1 =
sk

1− βk+1
2

µk+1 = µk −
η√

ŝk+1 + δ
m̂k+1

θk = µk +
ε√
sk + λ

, ε ∼ N (ε|0, 1)

mk+1 = β1mk + (1− β1)[N ĝ(θk) + λµk]

sk+1 = β2sk + (1− β2)[N ĝ(θk)]
2

m̂k+1 =
mk

1− βk+1
1

ŝk+1 =
sk

1− βk+1
2

µk+1 = µk −
η√

ŝk+1 + λ
m̂k+1

Table 3.1: Adam update versus Vadam update. Differences are highlighted in
blue. Main differences are in the weight-perturbation in the first line and in the
contribution from the prior distribution in the second line.

3.4 Variational Continual Learning

Variational continual learning (VCL) (Nguyen et al., 2017) is another

method that was used as a basis of this thesis. VCL is a general framework for

continual learning that combines on-line variational inference and Monte Carlo

variational inference for neural networks. It introduces a recursive update rule

that reuses a posterior from the previous task as a prior for a new one. The main

idea of the VCL is in the following recursive update rule:

p(θ|D1:T ) ∝ p(θ)
T∏

t=1

p(Dt|θ) ∝ p(θ|D1:T−1)p(DT |θ), (3.2)
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where T is the number of tasks, θ are model parameters and Dt is a dataset for

the task t.

In addition VCL uses coresets - subsets of data points from previous tasks,

during training. The method suggested in this work also can be combined with

coresets, but since it will not change the method at all, we do not provide any

results for it.

3.5 Related Work

Except the work on Variational Continual learning (Nguyen et al., 2017) that

is the basis of the suggested method, there are other works that have explored

Bayesian on-line learning framework.

Authors of the Bayesian Gradient Descent (BGD) (Zeno et al., 2018) sim-

ilarly to this work argue that knowing uncertainty of weights of a neural network

should help to alleviate catastrophic forgetting and provide a general algorithm

for continual learning. The authors derive BGD by minimizing KL-divergence

for the (n+1) task and reusing qn as a prior similarly to VCL. They have an

SGD-like update while the suggested update is similar to Adam/RMSProp. The

authors of BGD additionally perform pruning using signal to noise ratio (SNR)

= |µ|
σ

. BGD uses a different derivation from the suggested method and ap-

proximates product of the Hessian and parameters variance σ with H(θ)σi =
∂2L(µ)
∂θ2i

σi ≈ Eε[∂L(θ)∂θi
εi], while the suggested method approximates Hessian with

H(θ) ≈ E
[
∂L(θ)
∂θ

]
E
[
∂L(θ)
∂θ

]T
or with H(θ) ≈ E

[(
∂L(θ)
∂θ

)2]
.

Bayesian incremental learning (Kochurov et al., 2018) uses the same lower

bound as VCL and investigates how different posterior approximations behave

with it. This work suggests that better approximations to the posterior than

mean-field approximation might be beneficial for continual learning.

The work on on-line structured Laplace approximations (Ritter et al.,

2018) suggests that better approximation to the Hessian that would take into

account interaction between the elements should be helpful for continual learning
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and uses Kronecker factored approximation to the Hessian.

Two last works suggest that better approximations to the posterior and to the

Hessian can be among the ways to improve continual learning in neural networks

for methods that use Bayesian inference framework for it. The generality of the

method suggested in this thesis should make such experiments especially simple

and thus they are considered as the future work.



Chapter 4

Method Derivation and

Implementation Details

In this work we propose a general method to perform continual learning.

It is an algorithm that can be used in place of the popular optimization algo-

rithms, such as RMSProp (Tieleman and Hinton, 2012) or Adam (Kingma and

Ba, 2014). The method is based on the combination of Variational Continual

Learning (Nguyen et al., 2017) and Vadam (Khan et al., 2018). In case of a neu-

ral network the method uses a Bayesian neural network, but it does not requires

a user to define it. The suggest method requires negative log-likelihood as the

loss function, and that is the loss function that is usually used for training neural

networks.

It is possible to derive two methods for continual learning, one of them based

on Vprop and another one based on Vadam. We call these methods VpropVCL

and VadamVCL. Further we derive both of them, since VpropVCL is a simpler

algorithm and the derivation of the VadamVCL is based on it. It also makes

it easier to follow the derivation. The experiments were done using VadamVCL

only, since according to the Vadam paper, Vadam performs better than Vprop.

The derivation of VPropVCL is given in the section 4.2 and of VadamVCL in the

section 4.3.

13
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4.1 Notation

The following notation is used throughout the derivation:

T − total number of tasks

t− task index, t = 1, T

D − dataset,D = {yn, xn}n=1,N

N − size of the dataset, N = |D|
K − total number of iterations of an optimization algorithm

k − iteration of an optimization algorithm, k = 1, K

θ −model parameters (network weights in case of a neural network)

µ−mean of the Gaussian distribution

Σ− covariance of the Gaussian distribution

σ2 − diagonal of the covariance matrix of the Gaussian distribution

when its covariance matrix is diagonal and given by σ2I

λ− scaling parameter of the covariance

of a prior distribution p(θ) = N (θ|0, 1

λ
I)

∗ − parameters of the previous task posterior or of the prior

in case current task is the first one

ĝ − estimated gradient

H − Hessian matrix

L− loss

β1 − algorithms parameter corresponding to the decay rate of the first moment,

usually set to 0.9

β2 − algorithms parameter corresponding to the decay rate of the second moment,

usually set to 0.999

η − learning rate
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Assume that there are T tasks in total arriving one by one. In general total

number of tasks is not known in advance in continual learning, but here it is

used to make the notation more convenient. The task t, t = 1, T is described by

its dataset Dt. True posterior distribution for the task t is given by p(θ|D1:t).

Using variational inference, true posterior distribution is approximated with q(θ).

The method uses a Gaussian distribution q(θ) = N (θ|µ,Σ), and derivation

uses a full Gaussian distribution for convenience. In the end of the derivation

it will be approximated using mean-field variational inference (see section 3.2

for information on mean-field variational inference) with q(θ) = N (θ|µ,Σ) ≈
N (θ|µ,σ2I). Negative log-likelihood for the task t that is used in the loss is

f (t)(θ) = −log p(Dt|θ) = −
Nt∑
n=1

Eθ∼q(θ)
[
log p(y

(t)
n |θ,x(t)

n )
]
. A prior distribution

over the model parameters is given by p(θ) = N (θ|0, 1
λ
I).

4.2 VpropVCL

In general in order to do variational inference on a separate dataset Dt not in

a continual learning setting, we would maximize a variational lower bound:

ELBO(t)(q(θ)) = Eq[log p(Dt|θ)]− DKL[q(θ)||p(θ)]. (4.1)

Variational Continual Learning (VCL) (Nguyen et al., 2017) was described in

more detail in the section 3.4. It is based on the following recursion:

p(θ|D1:T ) ∝ p(θ)
T∏

t=1

p(Dt|θ) ∝ p(θ|D1:T−1)p(DT |θ). (4.2)

According to this recursive formula VCL suggests to maximize a lower bound

similar to 4.1 with the only difference coming from the prior p(θ) being replaced

with a posterior for the previous task q∗(θ):

ELBO
(t)
VCL(q(θ)) = Eq[log p(Dt|θ)]− DKL(q(θ)||q∗(θ)), (4.3)
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the differences are highlighted in blue.

In both Vprop and Vadam the loss is defined as the variational lower bound,

i.e. L(t) = ELBO(t)(q(θ)). If VCL variational lower bound 4.3 is used in the

Vprop derivation then the only difference in the update formulas will come from

the changes in the loss, and more specifically from replacing a prior with the

previous task posterior. Vprop update in the matrix form before the gradients

are calculated (appendix C, equations 40 and 41, (Khan et al., 2018)) is:

Σ−1k+1 = Σ−1k − 2βk[∇ΣLk], (4.4)

µk+1 = µk + βkΣk+1[∇µLk], (4.5)

where βk are intermediate constant method parameters.

Since the loss has changed, it is necessary to recompute the gradients. All

final differences from the original Vprop derivation in the final formulas will be

further highlighted in blue. The gradients of the loss L(t) = ELBO
(t)
VCL(q(θ)) are:

∇µL(t) = ∇µ

[
Eq[−f (t)(θ)]− DKL[q(θ)||q∗(θ)]

]
=

= −∇µ

[
Eq[f (t)(θ)] + DKL[q(θ)||q∗(θ)]

]
=

{

1) ∇µEq[f (t)(θ)] = [Bonnet and Price theorems, (Rezende et al., 2014)] =

= Eq[∇θf (t)(θ)],

2) DKL[q(θ)||q∗(θ)] = [(Duchi, 2007),θ ∈ Rl] =

=
1

2

{
tr(Σ−1∗ Σ) + (µ∗ − µ)TΣ−1∗ (µ∗ − µ)− l + log

|Σ∗|
|Σ|

}
⇒

⇒ ∇µDKL[q(θ)||q∗(θ)] = Σ−1∗ (µ− µ∗)
}

=

= −Eq[∇θf (t)(θ)]−Σ−1∗ (µ− µ∗), (4.6)
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∇ΣL(t) = −∇Σ

[
Eq[f (t)(θ)] + DKL[q(θ)||q∗(θ)]

]
=

{

1) ∇ΣEq[f(θ)] = [Bonnet and Price theorems, (Rezende et al., 2014)] =

=
1

2
Eq[∇2

θθf
(t)(θ)],

2) ∇ΣDKL[q(θ)||q∗(θ)] =
1

2
Σ−1∗ −

1

2
Σ−1

}
=

= −1

2

[
Eq[∇2

θθf
(t)(θ)] + Σ−1∗ −Σ−1

]
. (4.7)

Resulting update in the matrix form is:

Σ−1k+1 = (1− βk)Σ−1k + βk

[
∇2
θθf(θk) + Σ−1∗

]
. (4.8)

µk+1 = µk − βkΣk+1[∇θf(θk) + Σ−1∗ (µk − µ∗)]. (4.9)

Further sk := Σ−1k −Σ−1∗ . Both Vprop and Vadam use mean-field approxima-

tion, therefore Σ−1k = σ2
kI,Σ

−1
∗ = σ2

∗I ⇒ sk := σ−2k I − σ−2∗ I. Further Hessian

matrix ∇2
θθf(θk) is denoted as H(θk), and different step sizes αk and βk are used

for µ and s respectively. The point-wise update is:

µk+1 = µk −
αk

sk+1 + σ−2∗

[
N ĝ(θk;Dt) + (µk − µ∗)σ−2∗

]
, (4.10)

sk+1 = (1− βk)sk + βkN [diag(H(θk;Dt))]. (4.11)

Exact Hessian computation is slow and has to be approximated. This issue is

discusses in more detail in the section 4.3.2. The logic described there applies both

to VpropVCL and to VadamVCL. Additionally, gradient scaling by N and N2 is

explained in the section 4.3.1. Using a gradient magnitude approximation that

makes the method even more similar to RMSprop (Tieleman and Hinton, 2012)

and making changes to the notation of the constant parameters for convenience,

final point-wise VpropVCL algorithm for one task is shown in the table 4.1, where

it is compared to RMSprop.
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VpropVCL

θk = µk+
ε√

sk + σ−2∗
, ε ∼ N (ε|0, 1)

mk+1 = β1mk + (1− β1)[N ĝ(θk)+(µk − µ∗)σ−2∗ ]

sk+1 = β2sk + (1− β2)N2[ĝ(θk)]
2

µk+1 = µk −
η

√
sk+1 + σ−2∗

mk+1

Table 4.1: VpropVCL algorithm for training on one task in a continual learning
setting. All updates are point-wise. The differences from RMSprop (Tieleman
and Hinton, 2012) are highlighted in blue. Main differences are in the weight-
perturbation in the first line and in the contribution from the previous task pos-
terior in the second line.

4.3 VadamVCL

VadamVCL is derived in the same way as VpropVCL, but using Vadam as

a basis for the derivation. Difference between Vprop and Vadam is in the mo-

mentum term added to the mirror descent update in the case of Vadam. While

Vprop mirror descent update is

mk+1 = argmin
m
〈m,−∇mLk〉+

1

βk
DKL[q||qk], (4.12)

Vadam adds momentum term to this update (appendix E.2. in (Khan et al.,

2018)):

mk+1 = argmin
m
〈m,−∇mLk〉+

1

βk
DKL[q||qk]−

αk
βk

DKL[q||qk−1]. (4.13)

There is no difference between Vprop and Vadam in terms of presence of a

prior distribution. In both updates it appears only in the loss function. Therefore,

the only change in Vadam derivation that has to be done to derive VadamVCL,

is a replacement of the formulas for gradient in the Vadam update, so that they
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would depend on the previous task posterior distribution.

Using results from the equations 4.6, 4.7, the resulting update in the matrix

form with Sk = Σ−1k −Σ−1∗ is:

Sk+1 =
(

1− βk
1− αk

)
Sk +

βk
1− αk

∇2
θθf(θk), (4.14)

µk+1 = µk −
βk

1− αk

(
Sk+1 + Σ−1∗

)−1[
∇θf(θk) + Σ−1∗ (µk − µ∗)

]
+

+
αk

1− αk

(
Sk+1 + Σ−1∗

)−1(
Sk + Σ−1∗

)(
µk − µk−1

)
(4.15)

The point-wise update is:

sk+1 = (1− α̃k)sk + α̃k[NH(θk)], (4.16)

µk+1 = µk −
α̃k

sk+1 + σ−2∗

[
N ĝ(θk) + (µk − µ∗)σ−2∗

]
+

+ γ̃k
sk + σ−2∗
sk+1 + σ−2∗

(µk − µk−1) (4.17)

Here θk ∼ N (θ|µk,σ2
k),σ

−2
k = sk + σ−2∗ . θk is sampled using the re-

parametrization trick. The point-wise algorithm for one task without approx-

imation to the Hessian is compared to Adam in the table 4.2.

Prior over the weights is given by N (0, 1
λ
). Parameters β1, β2, η are usually set

in the same way as in Adam, i.e β1 = 0.9, β2 = 0.999, η = 0.001. λ was usually

set to 1. Initially mk was set to 0 and sk to 1. Between different tasks mk and

sk are reset to their initial values.
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Adam VadamVCL

θk = µk

mk+1 = β1mk + (1− β1)[ĝ(θk)]

sk+1 = β2sk + (1− β2)[ĝ(θk)]
2

m̂k+1 =
mk

1− βk+1
1

ŝk+1 =
sk

1− βk+1
2

µk+1 = µk −
η√

ŝk+1 + δ
m̂k+1

θk = µk+
ε√

sk + σ−2∗
, ε ∼ N (ε|0, 1)

mk+1 = β1mk+

+ (1− β1)[N ĝ(θk)+(µk − µ∗)σ−2∗ ]

sk+1 = β2sk + (1− β2)Ndiag[H(θk)]

m̂k+1 =
mk

1− βk+1
1

ŝk+1 =
sk

1− βk+1
2

µk+1 = µk −
η

ŝk+1 + σ−2∗
m̂k+1

Table 4.2: VadamVCL algorithm for one task versus Adam algorithm. The dif-
ferences are highlighted in blue. Main differences are in the weight-perturbation
(line 1), contribution from the previous task posterior (line 3) and approximation
to the Hessian (line 4).

4.3.1 A Note about Gradients Scaling

Vadam uses f(θ) = −log p(D|θ) = −
N∑
i=1

p(xi|θ) =
N∑
i=1

fi(θ), N = |D| as a

loss function and thus the stochastic gradient estimation it needs is
N∑
i=1

∇θfi(θ).

When mini-batch gradient descent is used, machine learning libraries, such as

TensorFlow or PyTorch, usually return the mean of the gradient over all points

in a mini-batch ĝ(θ) = 1
M

M∑
i=1

∇θfi(θ), where M is a mini-batch size. We can

notice that
N∑
i=1

∇θfi(θ) ≈ NE[ 1
M

M∑
i=1

∇θfi(θ)] = N
M
E[

M∑
i=1

∇θfi(θ)] = N ĝ(θ), with

expectation taken over all possible mini-batches. Therefore, to get a correct

gradient estimation we can either use −N
M

M∑
i=1

p(xi|θ) as a loss function instead of a

usual − 1
M

M∑
i=1

p(xi|θ) or multiply the gradient by N in the optimization algorithm.

We used the second option.
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4.3.2 Approximation to the Hessian

Equations 4.11 and 4.16 require to compute diagonal of the Hessian matrix.

However, as it was already mentioned in the previous sections, computing Hessian

is a slow procedure. It is unreasonable to use it for models with many parameters

such as neural networks, because its size is a square of the number of model pa-

rameters. Thus, it requires an approximation. Two types of approximations were

used based on (Khan et al., 2018): gradient magnitude (GM) and Generalized

Gauss-Newton (GGN).

Gradient magnitude (GM)

Gradient magnitude approximation is an unconventional name that is used

here to denote an approximation to the Hessian of the form:

H(L(θ)) ≈ E
[∂L(xi, yi,θ)

∂θ

]
E
[∂L(xi, yi,θ)

∂θ

]T
≈ ĝĝT . (4.18)

This approximation makes methods even more similar to RMSprop and Adam.

Generalized Gauss-Newton (GGN)

Generalized Gauss-Newton (GGN) approximation (Bottou et al., 2016)

is an approximation of the form:

H(L(θ)) ≈ E
[(∂L(xi, yi,θ)

∂θ

)2]
. (4.19)

This approximation allows to establish a connection to the Elastic Weight

Consolidation (EWC) (Kirkpatrick et al., 2017) method for continual learning.

EWC minimizes the following lower bound:

L(θ) = LB(θ) +
∑

i

λ

2
Fi(θi − θA,i)2, (4.20)

where A,B - indexes of the tasks, A is the first one and B is the second one, i -
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index of a model parameter, F - diagonal of the Fisher information matrix, λ - a

constant parameter of the method.

If Generalized Gauss-Newton (GGN) approximation to the Hessian is used,

then we are in fact approximating Hessian matrix with a Fisher information

matrix because

H(L(θ)) ≈ E
[(∂L(xi, yi,θ)

∂θ

)2]
= E

[(∂{−log p(yi|xi,θ)}
∂θ

)2]
= F(θ). (4.21)

Taking into account that σ−2k = sk + σ−2∗ and that µk − µ∗ is multiplied

by σ−2∗ , one can see the connection to the EWC, because EWC adds difference

between current and previous parameters values multiplied by Fisher Information

matrix to the loss.

While according to the EWC paper the method required a lot of experimen-

tation to finally decide on the way to modify loss, here it occurs naturally.

Gradient magnitude approximation is faster to compute, but it is a worse

approximation than GGN. Since GGN is a better approximation the method

should converge in less epochs that might compensate the time algorithm needs

to compute it.

Calculating a better approximation once

A better approximation to the Hessian can have two main effects on the

suggested method: 1. The method will converge in less epochs for each task;

2. The method will use a better approximation to the covariance matrix of

the posterior distribution. While convergence speed for each task is important,

better approximation to the posterior distribution covariance should be especially

valuable in the case of continual learning because it affects the uncertainty on

which depends parameters change rate. While it is expensive to compute a better

approximation for each training episode, computing it once in the end of the

training for the given task can be done in reasonable time. Thus, effects of

a computation of a better approximation once were also explored for some of
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the experiments. Results for the Hessian computed once for the mean-fitting

experiment are provided in the section 5.1.

4.4 Final Algorithm

Algorithm in the table 4.3 is the full suggested VadamVCL algorithm for

continual learning that also takes into account parameter initialization before

each new task. The only change required compared to the training in one-task

setting is the re-initialization of the parameters. For a new task parameters for

moments are set to their default values and parameters that were parameters of a

prior distribution in case of Vadam are re-initialized using previous task posterior

for all tasks that come after the first one. This can be implemented as a function

that is called before the training starts instead of a usual call to initialization and

does not put any additional burden on a VadamVCL user.

Final algorithm is presented with the gradient magnitude approximation. This

approximation was used for the main continual learning experiments because of

its speed. As in the Vadam paper in the case of GM approximation a square root

is used in the scaling parameter (line 13), see Appendix E in Vadam paper for the

proof. To compensate for this square root Hessian approximation was scaled using

N2 instead of N . Additionally, there is a γ parameter that is used to scale squared

gradients. As the experiments have shown Vadam slightly shrinks variance that

worsens continual learning results in the long run when we have many tasks, and

this parameter was added to compensate for this behavior. Parameter γ was set

to 1 in all experiments, unless explicitly said otherwise.

To sum up, there is a set of datasets Dt, t = 1, T for T tasks that are arriving

sequentially. At one step of an algorithm we have access only to the current

dataset and total number of the tasks T is not known in advance. T here is used

only to make the notation more convenient.
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Table 4.3: Final VadamVCL algorithm for continual learning. All updates

are point-wise. All parameters are the parameters related to the current

task unless the notation indicates otherwise. Differences from Adam are

highlighted in blue.

1 for dataset Dt, N = |Dt| for the task t, t = 1, T do

2 m0 = 0, s0 = 0

3 if t == 1 then

4 µ∗ = 0,σ−2∗ = λ

5 else

6 µ∗ = µ
(t−1)
last ,σ−2∗ = s

(t−1)
last + (σ

(t−1)
∗ )−2

7 for k = 1, K, K - number of epochs do

8 θk = µk+ε/
√
sk + σ−2∗ , ε ∼ N (ε|0, 1)

9 mk+1 = β1mk + (1− β1)[N ĝ(θk)+(µk − µ∗)σ−2∗ ]

10 sk+1 = β2sk + (1− β2)γN2[ĝ(θk)]
2

11 m̂k+1 = mk/(1− βk+1
1 )

12 ŝk+1 = sk/(1− βk+1
2 )

13 µk+1 = µk − η m̂k+1/(
√
ŝk+1 + σ−2∗ )

14 Discard the dataset Dt

Main differences from Adam are in the initialization of additional parameters

(lines 4 and 6), weight-perturbation (line 8) and contribution from the previous

task posterior (line 9).
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Experiments

In the previous section we have derived VadamVCL algorithm and shown

that it has a simple form. In this section we will demonstrate that despite this

simplicity VadamVCL produces results comparable to the state of the art for

continual learning.

Among the benchmarks used to test continual learning methods are experi-

ments constructed based on the MNIST dataset, see e.g. (Nguyen et al., 2017;

Zeno et al., 2018; Lopez-Paz et al., 2017). Further we present results on two

smaller experiments that provide intuition into how the method works and on

the Permuted MNIST and Split MNIST experiments. One of the small experi-

ments is an experiment about finding a mean of several Gaussian distributions.

It is provided in the section 5.1. Another one is a 2D classification experiment

in the section 5.2. Results for the Permuted MNIST experiment are presented in

the section 5.3 and for Split MNIST in the section 5.4.

Before moving to the experiments it is necessary to introduce terms single-

head and multi-head network. Usually when a neural network is used for

classification its last layer has a fixed number of units that is equal to the number

of possible classes. During continual learning for classification problems new

classes may or may not appear. Based on this there are two main approaches to

constructing neural networks. If new classes are expected then additional units
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are added to the output layer and only this subset of the units from the last layer

is used during training. Such architecture is called a multi-head network. We

want to emphasize, that we know from which task inputs come from and use only

the subset of the units in the output layer that corresponds to this task. Example

of an experiment that requires a multi-head network is Split MNIST.

If it is assumed that new classes do not appear for any task then there is no

need to add more units to the last layer and all of them are always used. In

this case we refer to the network as a single-head network. Example of an

experiment that uses it, is Permuted MNIST.

For the fair comparison all methods that are used in the experiments do not

use additional memory to store any kind of data from previous tasks similarly

to VadamVCL. VadamVCL can be augmented with some form of memory, e.g.

with coresets that were used in the VCL paper (Nguyen et al., 2017). Basically, a

coreset is a subset of a dataset that is saved after training on the task is finished

and gets mixed into the datasets for the next tasks to help preserve performance

on the previous tasks. However, suggested algorithm will not change in any way

if memory is used, so experiments did not involve memory.

5.1 Mean Estimation of Several Gaussian

Distributions

In this experiment we have T tasks. For each t = 1, T task we have a

data point yt and a likelihood is given by a Gaussian distribution with an un-

known mean θ and a known variance Σt, N (yt|θ,Σt). The mean parameter

θ for likelihoods is shared among all tasks and it is the parameter for which

we are doing inference. Posteriors are approximated with a diagonal Gaussian

q(θ) = N (θ|m,σ2I). The prior for the first task is p(θ) = N (θ|0, e10I). The

method reuses previous task posterior as a prior for the next task. Therefore, the



27 5.1 Mean Estimation of Several Gaussian Distributions

model is

p(θ|y1, ...,yT ) ∝ p(yT |θ)...p(y1|θ)p(θ) = p(θ)
T∏

t=1

p(yt|θ) ≈ q(θ). (5.1)

Experiments were done with T = 3 and T = 5. The order of tasks appearance

is from left to right. Results are provided in the figures 5.1 and 5.2. The results

provided use only gradient magnitude approximation or exact Hessian because

performance of gradient magnitude and GGN approximation when only one data

point is given for each task is the same in this experiment. It can be noticed from

these figures that type of the approximation makes a big difference for this small

convex problem, however, it is not necessarily so for non-convex problems.

Figure 5.1: Results for the experiment on the mean estimation of 3 Gaussians.
Older tasks are more transparent. These are results for VadamVCL with the
diagonal of exact Hessian. They are are exactly the same as for VCL, so there is
only one plot for both of them.
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(a) VadamVCL with a gradient magnitude approximation to the Hessian (default version). The
variance is shrinked and the approximation does not get close to the 4th and 5th task.

(b) VadamVCL results with a gradient magnitude approximation to the Hessian used during
training as in the default version, but the diagonal of the exact Hessian is calculated in the end
of the training on a task, to get posterior parameters. The results looked the same when Hessian
was computed for each training step and when VCL was used.

Figure 5.2: Results for the experiment on the mean estimation of several Gaus-
sians. Older tasks are more transparent. The variance is shrinked in the case
of VadamVCL because of the gradient magnitude approximation to the Hessian,
and it results in poor performance on later tasks. It is unclear from this ex-
periment how this affects performance on non-convex problems, such as neural
networks. Interestingly, only one computation of the Hessian, solves the problem
in this case.
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5.2 2D Classification

One more simple experiment that provides a way to get intuition into how

different methods work is a classification of a 2D dataset with a small neural

network. For this experiment we used a one-layer neural network with 20 units.

The data for each task was generated using two Gaussian distributions. One of

them never changes, while the second Gaussian is rotated around it on the 2π(t−1)
T

radians, t = 1, T , T - total number of tasks. T = 5 was used for all experiments.

Multi-head network

For the experiment with a multi-head network data generated for all tasks

was considered to be coming from different classes. For the first task the labels

were 0 and 1, for the second one 2 and 3, etc. Results for this experiment are

provided in the figure 5.3. Results from VCL and VadamVCL are similar in this

case. This experiment was done using only the gradient magnitude approximation

to the Hessian in VadamVCL because the results are already good and better

approximation cannot noticeably improve them.

Single-head network

In order to use a single-head network all classes need to be known in advance.

Thus, for all tasks it was assumed that data was coming from the same two

classes. Results for VadamVCL with a gradient magnitude approximation to the

Hessian are in the figure 5.4. Results with GGN approximation are in the figure

5.5. As you can see, the type of approximation does not change the result much

in this experiment. This suggests that GM approximation might be a good choice

for bigger experiments because of its speed and good empirical results.
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(a) The 1st task after the
network was trained on it.

(b) The 1st task after the
network was trained

on the 5th task.

(c) The 5th task after
being trained on it.

Figure 5.3: VadamVCL error-bounds on the 2D classification experiment with a
multi-head network. The error-bound on the 1st task changes only slightly after
the 5th task, and the error-bound for the 5th task looks correct.

Figure 5.4: VadamVCL error-bound on the 2D classification experiment with a
single-head network and a gradient magnitude approximation to the Hessian. Red
class remains the same for all tasks, and the blue class changes. More transparent
data points belong to the older tasks.
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Figure 5.5: VadamVCL error-bound on the 2D classification experiment with a
single-head network and a GGN approximation to the Hessian. Red class remains
the same for all tasks, and the blue class changes. More transparent data points
belong to the older tasks. Results are comparable to the results obtained using a
gradient magnitude approximation to the Hessian in the figure 5.4.
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5.3 Permuted MNIST

Permuted MNIST experiment is one of the continual learning benchmarks.

The dataset received for each task consists of the images of MNIST digits (LeCun,

1998) which pixels have undergone a fixed random permutation. It is used in

(Nguyen et al., 2017; Goodfellow et al., 2013; Kirkpatrick et al., 2017; Zenke

et al., 2017). One task is generated by applying a fixed permutation to all images

in the original MNIST dataset. Tasks generation process is shown in the figure

5.6.

Figure 5.6: Tasks generation for the Permuted MNIST experiment. One permu-
tation vector corresponds to one task, and this vector is applied to each image in
the original MNIST dataset to generate images for a given task.

Permuted MNIST experiment was done using 10 tasks in total. All methods

were tested using a single-head neural network with 2 layers, 100 units each.

This experiment was performed using a gradient magnitude approximation to

the Hessian in VadamVCL because of its speed. Depending on the γ parameter

of VadamVCL it is possible to either get better results in the long run with worse

performance on the older tasks or get better performance on the previous tasks

with worse performance on the new ones and worse performance overall in the

long run. With γ = 1 VadamVCL results in the long run are worse than other
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methods, but performance on the earlier tasks is preserved better. Results for

γ = 1 are given in the figures 5.7 and 5.8. Comparable performance to other

methods can be achieved with γ = .01. This results are presented in the figure

5.9.

VadamVCL was run for 500 epochs with β1 = 0.9, β2 = 0.999, λ = 1 batch

size 256 and 10 MC-samples during training and evaluation. For γ = 1 a learning

rate η = 0.0005 was used, and η = .001 was used for γ = 0.01.

Figure 5.7: Average accuracy results on the Permuted MNIST experiment where
VadamVCL uses γ = 1. Consider this figure together with the figure 5.8.
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Figure 5.8: Results for individual tasks on the Permuted MNIST experiment.
With γ = 1 VadamVCL average accuracy is worse in the long run that other
methods average accuracy. However, the performance on the first tasks remains
better and in general there is less forgetting. Even though achieved accuracy on
the later tasks is lower, it drops less during further training.
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Figure 5.9: Results on the Permuted MNIST experiment. Top plot shows average
accuracy and the bottom one accuracy on individual tasks. With γ = 0.01
VadamVCL average accuracy is comparable to SI and EWC and slightly worse in
the long run than VCL. Performance on the individual tasks is also comparable
to other methods.
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5.4 Split MNIST

Split MNIST is another widely used continual learning benchmark. The ex-

periments are designed by splitting MNIST dataset into 5 pairs: 0/1, 2/3, 4/5,

6/7, 8/9. Each of this subsets is treated as a separate task and is used in a usual

continual learning setting. This dataset is used in e.g. (Nguyen et al., 2017;

Goodfellow et al., 2013). Tasks generation process is illustrated in the figure

5.10.

Figure 5.10: Tasks generation for the Split MNIST experiment. MNIST dataset
is split into 5 pairs: 0/1, 2/3, 4/5, 6/7, 8/9. Each of this subsets is treated as a
separate task.

Results for the Split MNIST experiment are given in the figure 5.11.

For this experiment for all methods was used a multi-head neural network

with 2 hidden layers with 256 units each. VadamVCL parameters were set to

β1 = 0.9, β2 = 0.999, λ = 1, γ = 1, η = 0.0006. Training on each task took 500

epochs.
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Figure 5.11: Average accuracy on the Split MNIST experiment. In the bottom
figure EWC results are omitted to show more detailed results. VadamVCL per-
forms in this experiment better than EWC and VCL and comparable to SI. The
reason for such good performance is most probably the fact that VadamVCL
slightly shrinks variance of the posterior distribution combined with the usage
of a multi-head network. If a multi-head network is used, then for each new
task there are new parameters on which performance on the previous tasks does
not depend. VadamVCL penalizes changes to previous parameters stronger than
other methods because of the shrinked variance, but new parameters allow to
get good performance on new tasks, and this results in better performance over-
all. Since average accuracy is close to 100%, accuracy on individual tasks is not
provided.
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Discussion and Conclusion

In this thesis we have introduced an optimization algorithm for continual

learning called VadamVCL that is easy to implement and use. VadamVCL makes

use of variational inference, and its implementation is similar to Adam algorithm.

VadamVCL can be applied to different models and to neural networks in partic-

ular, and it does not require a user to define a Bayesian neural network or to

modify a loss function. After the algorithm is implemented, it allows to make a

model work in a continual learning setting simply by replacing an optimization al-

gorithm used. Results on the small experiments, and Permuted and Split MNIST

experiments show that VadamVCL has performance comparable to other contin-

ual learning methods. The algorithm also exhibits an interesting connection to

Elastic Weight Consolidation method for continual learning.

To sum up, as the result of this study we introduced a new method for con-

tinual learning called VadamVCL that

• is easy to implement and use,

• does not use additional memory,

• is applicable to a neural network,

• performs comparably or better than other continual learning methods,
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• has connections to other continual learning methods.

Since VadamVCL has a simple expression for its updates it allows for various

improvements to the method to be done easily. As the future work it is possible

to try better approximations to the Hessian. In the smaller experiments we

have compared gradient magnitude approximation to the Hessian, generalized

Gauss-Newton approximation to the Hessian and exact Hessian where it was

possible. Better approximations improved continual learning results suggesting

that this direction is worth exploring more. Another possible direction for the

future research is to try a better approximation to the posterior distribution

instead of using mean-field variational inference.

Additionally, it would be interesting to see method results on different types

of models, especially on bigger networks and other types of networks except the

networks that use only fully-connected layers, e.g. on convolutional neural net-

works. The method also requires experiments with bigger datasets, e.g. Split and

Permuted CIFAR and with increased number of tasks.
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