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Abstract

Learning with neural networks depends on the particular parametrization of the functions repre-
sented by the network, that is, the assignment of parameters to functions. It also depends on the
identity of the functions, which get assigned typical parameters at initialization, and, later, the pa-
rameters that arise during training. The choice of the activation function is a critical aspect of the
network design that influences these function properties and requires investigation. This thesis fo-
cuses on analyzing the expected behavior of networks with maxout (multi-argument) activation
functions. On top of enhancing the practical applicability of maxout networks, these findings add
to the theoretical exploration of activation functions beyond the common choices. We believe this
work can advance the study of activation functions and complicated neural network architectures.

We begin by taking the number of activation regions as a complexitymeasure and showing that
the practical complexity of deep networks with maxout activation functions is often far from the
theoretical maximum. This analysis extends the previous results that were valid for deep neural
networks with single-argument activation functions such as ReLU. Additionally, we demonstrate
that a similar phenomenon occurswhen considering the decision boundaries in classification tasks.
We also show that the parameter space has a multitude of full-dimensional regions with widely
different complexity and obtain nontrivial lower bounds on the expected complexity. Finally, we
investigate different parameter initialization procedures and show that they can increase the speed
of the gradient descent convergence in training.

Further, continuing the investigation of the expected behavior, we study the gradients of amax-
out network with respect to inputs and parameters and obtain bounds for themoments depending
on the architecture and the parameter distribution. We observe that the distribution of the input-
output Jacobian depends on the input, which complicates a stable parameter initialization. Based
on the moments of the gradients, we formulate parameter initialization strategies that avoid van-
ishing and exploding gradients in wide networks. Experiments with deep fully-connected and con-
volutional networks show that this strategy improves SGD and Adam training of deep maxout net-
works. In addition, we obtain refined bounds on the expected number of linear regions, results on
the expected curve length distortion, and results on theNTK. As the result of the research in this the-
sis, we developmultiple experiments and helpful components andmake the code for them publicly
available.
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Chapter 1

Introduction

In this thesis, we advance the line of analysis proposed by Hanin and Rolnick (2019a,b), where the
focus is on the expected behavior of the deep neural networks. We consider feedforward neural
networks with n0 inputs, L layers of widths n1, . . . , nL, which implement functions of the form
f = ψ ◦ ϕL−1 ◦ · · · ◦ ϕ1. The l-th hidden layer implements a function ϕl : Rnl−1 → Rnl with
output coordinates, i.e., units, given by trainable affine functions followed by a fixed real-valued
activation function, and ψ : RnL−1 → RnL is a linear output layer. Whereas prior works focus
on single-argument activation functions, we obtain novel results for the previously little-studied
multi-argument maxout activation function (Goodfellow et al., 2013). Concretely, maxout units
compute parametric affine functions followed by a fixedmulti-argument activation function of the
form (s1, . . . , sK) 7→ max{s1, . . . , sK} and can be regarded as a natural generalization of ReLUs,
which have a single-argument activation function s 7→ max{0, s}. On top of enhancing the practi-
cal applicability of maxout networks, these findings add to the theoretical exploration of activation
functions beyond the standard choices, such as ReLU. We believe this work can pave the way for
the investigation ofmulti-argument activation functions and complicated neural network architec-
tures.

For any choice of parameters, maxout networks subdivide their input space into linear regions,
maximal connected subsets of the input spaceRn0 onwhich the function f computed by a network
has a constant gradient. We take the number of linear regions as ameasure of the complexity of the
function that a network computes and observe that maxout networks can assume widely different
numbers of linear regions with positive probability. We then compute an upper bound on the ex-
pected number of regions and volume given properties of the parameter distribution, covering the
case of zero biases. Further, taking the classification standpoint,weobtain corresponding results for
the decision boundary ofmaxout (andReLU)networks, alongwith bounds on the expecteddistance
to the decision boundary. Experiments show that the theoretical bounds capture the general behav-
ior. Wepresent algorithms for enumerating the regions ofmaxout networks andpropose parameter
initialization strategies with two types of motivations, one to increase the number of regions, and
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second, to normalize the variance of the activations similar to Glorot and Bengio (2010) andHe et al.
(2015), but now for maxout. We observe experimentally that this could improve training inmaxout
networks.

We continue with the study of the gradients of maxout networks with respect to the parame-
ters and the inputs by analyzing a directional derivative of the input-output map. We observe that
the distribution of the input-output Jacobian of maxout networks depends on the network input
(in contrast to ReLU networks), which can complicate the stable initialization of maxout networks.
Nevertheless, based on bounds on the moments, we derive an initialization that avoids vanishing
andexplodinggradients inwidenetworks. Experimentally,we showthat, compared toother initial-
izations, the suggested approach leads to better performance for fully connected and convolutional
deep networks of standardwidth trainedwith SGDor Adamand better or similar performance than
ReLUnetworks. Additionally,we refine the previous upper bounds on the expectednumber of linear
regions. We also derive results for the other measure of the complexity of a network, the expected
curve length distortion, observing that it does not grow exponentially with the depth in wide net-
works. Furthermore,weobtainboundson themaxoutneural tangent kernel (NTK),whichdescribes
the evolution of neural networks during the training by gradient descent, suggesting that it might
not converge to a constant when both the width and depth are large.

1.1 Maxout networks

1.1.1 Definition

As stated above, we consider a feedforward neural networkN withn0 inputs andL layers ofwidths
n1, . . . , nL, which implements a mapN : Rn0 → RnL given by a composition of maps

N := ψ ◦ ϕL−1 ◦ · · · ◦ ϕ1.

The l-th hidden layer, l = 1, . . . , L − 1 implements a function ϕl : Rnl−1 → Rnl . Its output co-
ordinates, i.e., units, are given by trainable affine functions called pre-activation functions ζ(l)(x) :

Rnl−1 → Rnl followed by fixed real-valued activation functions σ(l) : Rnl → Rnl . Pre-activation
functions and parametrized by a weight matrixW (l) ∈ Rnl×nl−1 and a bias vector b(l) ∈ Rnl :

ζ(l)(x) :=W (l)x+ b(l),

where x ∈ Rnl−1 is a layer input, with x ∈ Rn0 being a network input. The output layer is given
by a linear function ψ : RnL−1 → RnL . We denote the total number of hidden units byN = n1 +

· · ·+ nL−1. The collection of all trainable parameters is denoted byΘ = {W, b}.
In this thesis, we are interested in the functions parametrized by artificial feedforward neural

networks withmaxout units, which can be regarded as a natural generalization of ReLUs.
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Definition 1.1 (ReLU activation). Given an input x ∈ Rn, where x may be an input or a hidden
layer state, a rectified linear unit (ReLU) implements a function

Rn → R; x 7→ max{〈W,x〉+ b, 0},

whereW ∈ Rn and b ∈ R are trainable weights and biases.

Definition 1.2 (Maxout activation). A rank-K maxout unit, introduced by Goodfellow et al. (2013),
computes themaximumofK real-valuedparametric affine functions. Concretely, a rank-Kmaxout
unit with n inputs implements a function

Rn → R; x 7→ max
k∈[K]

{〈Wk,x〉+ bk},

whereWk ∈ Rn and bk ∈ R, k ∈ [K] := {1, . . . ,K}, are trainable weights and biases. TheK
arguments of the maximum are called the pre-activation features of the maxout unit.

A rank-K maxout unit can be regarded as a composition of an affinemapwithK outputs and a
maximum gate. A layer corresponds to the parallel computation of several such units. For instance,
a layer with n inputs andmmaxout units computes functions of the form

Rn → Rm; x 7→


maxk∈[K]{〈W

(1)
1,k ,x〉+ b(1)1,k}
...

maxk∈[K]{〈W
(1)
m,k,x〉+ b(1)m,k}

 ,
where nowW

(1)
i,k and b(1)i,k are the weights and biases of the kth pre-activation feature of the ith

maxout unit in the first layer. The situation is illustrated in Figure 1.1 for the case of a network with
two inputs, one layerwith twomaxout units of rank three, and one output layerwith a single output
unit.

1.1.2 Significance of maxout network research

Belowwe outline multiple reasons that motivate the study of maxout networks.

Maxout unit activation functions are multi-argument A maxout unit may be considered a
multi-argument generalization of a ReLU, which computes the maximum of a real-valued affine
function and zero. Since understanding the behavior of multi-argument activation functions is
interesting from the theoretical point of view and can facilitate the design of novel activation
functions, maxout unit activation function analysis can serve as a platform for such investigation.

Potential extension to complicated architectures Some of themodern architectures usemulti-
argument activation functions. For instance, graph neural networks (GNNs) employ a maximum

16



Chapter 1. Introduction

x1

x2

inp
ut

affi
ne ma

x
affi

ne

W (1) W (2)

Figure 1.1: Illustration of a simplemaxout networkwith two input units, one hidden layer consisting
of twomaxout units of rank 3, and an affine output layer with a single output unit.

aggregation function (Hamilton, 2020), essentially a maxout activation function. Therefore, we be-
lieve that developing the theory and implementation aspects of maxout networks can serve as an
interesting platform for architecture design.

Maxout units are frequently used Even thoughmaxout networks are used less than other pop-
ular activation function choices, such as ReLU activations, they are still frequently used. For in-
stance, there were 2, 010 references mentioning maxout networks since 2022 on Google Scholar as
of 11.06.2023 (Google Scholar, 2023). Moreover, Goodfellow et al. (2013) demonstrated that max-
out networks could perform better than ReLU networks under similar circumstances. Additionally,
maxout networks have been shown to be useful for combating catastrophic forgetting in neural net-
works (Goodfellow et al., 2015). On the other hand, Castaneda et al. (2019) evaluated the perfor-
mance of maxout networks in a big data setting and observed that increasing the width of ReLU
networks is more effective in improving performance than replacing ReLUs with maxout units and
that ReLU networks converge faster than maxout networks. We observe that maxout networks, in
general, and proper initialization strategies formaxout networks, in particular, have not been stud-
ied in the same level of detail as for ReLUnetworks and that thismight resolve some of the problems
encountered in previous maxout network applications.

Maxout networks solve the dyingneurons problem inReLUnetworks One of themotivations
for introducing maxout networks in Goodfellow et al. (2013) was to provide an alternative to ReLU
networks with the potential to improve issues with dying neurons. The dying neurons problem in
ReLUnetworks refers to ReLUneurons being inactive on a dataset and never getting updated during
optimization. It can lead to a situation when the training cannot commence if all neurons in one
layer are dead. This problem never occurs in maxout networks since maxout units are always ac-
tive. Furthermore, the absence of the zeroed paths, as in ReLU networks, has unclear effects on the
function complexity.
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RELU NETWORK
Before training After training

MAXOUTNETWORK
Before training After training

Figure 1.2: Example of a situation where the training is unsuccessful for a ReLU network because all
neurons in the first layer are dead, while a maxout network trains successfully on the same dataset.
We indicate the positions of the breakpoints in the first layer with the green× symbol. Notice that
the breakpoints do not move during the training of a ReLU network but change their positions in a
maxout network.

We design a simple experiment to illustrate the issue of dying neurons. We consider a binary
classification task on a dataset sampled from a Gaussian mixture of two univariate Gaussians
N(0.8, 0.1) and N(1.6, 0.1). We sample 600 training, 200 validation, and 200 test points. We
construct maxout and ReLU networks with 5 layers and 5 units per layer. Maxout units rank equals
2. We set weights and biases in the first layer so that the breakpoints are left of the data. For ReLU,
we also ensure that the weights are negative to guarantee that the neurons in the first layer are
inactive. Hence, all the units in the first layer of the ReLU network are dead. Then we train the
network for 20 epochs using SGD with a learning rate of 0.5 and batch size of 32. For the ReLU
networks, since all units in the first layer are dead, the training is unsuccessful, and the accuracy on
the test set is 50%. In contrast, for the maxout network, the test set accuracy is 100%. Figure 1.2
illustrates this example.

Maxout networks aremore compatiblewith dropout than ReLUnetworks Maxout networks
were proposed by Goodfellow et al. (2013) as an alternative to ReLU networks with the potential
to attain better model averaging when used with dropout (Hinton et al., 2012). The original paper
(Goodfellow et al., 2013) conducted experiments comparingmaxout and tanh. In Table 1.1, we show
the results of an experiment demonstrating that in terms of allowing for a better approximation
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Table 1.1: Accuracy on the MNIST dataset of fully-connected networks trained with dropout with a
rate of 0.5 and of average predictions of several networks inwhich half of theweights weremasked.
All results were averaged over 4 runs. Maxout rankK = 5. Networks had 3 layers with 128, 64, and
32 neurons. Maxout networks were initialized using the initialization suggested in Chapter 4, and
ReLU networks using He initialization with Gaussian distribution (He et al., 2015). ReLU networks
with dropout give results closer to a single model, whereas maxout networks with dropout give re-
sults closer to the average of a larger number of models. This observation indicates that maxout
units are more effective for obtaining better model averaging using dropout.

DROPOUT 1MODEL
AVERAGE OF
2MODELS

AVERAGE OF
3MODELS

AVERAGE OF
4MODELS

ReLU 97.04±0.14 97.09±0.17 97.73±0.08 97.87±0.04 97.94±0.08

Maxout 98.37±0.09 97.66±0.04 98.03±0.05 98.15±0.08 98.19±0.06

of model averaging based on dropout, maxout networks compare favorably against ReLU. This ob-
servation indicates that maxout units can indeed be more suitable for training with dropout when
properly initialized. We point out that several contemporary architectures often rely on dropout,
such as transformers (Vaswani et al., 2017).

1.2 Contributions and thesis outline

Westart by providing the background for the results presented in this thesis inChapter 2. We review
the historical development of expressivity and network complexity research; stable initialization of
neural networks; the connection between neural networks with piece-wise linear activations and
tropical geometry; and conclude with a brief overview of the neural tangent kernel.

We proceed with Chapter 3, based on Tseran andMontúfar (2021). In this part of the thesis, we
analyze the expected complexity of maxout networks. For any choice of parameters, maxout net-
works subdivide their input space into linear regions,maximal connected subsets of the input space
Rn0 onwhich the function f computed by a network has a constant gradient. We formalize the no-
tion of linear regions using the concept of activation regions, defined as subsets of the input space
where different pre-activation features attain maximum. Hence, to characterize the network com-
plexity, we are concerned with the expected number of activation regions and their volume given
probability distributions of parameters and corresponding properties for the decision boundaries
in classification tasks. We obtain the following results for the complexity of maxout networks.

• Therearewidelydifferentnumbersof linear regions thatareattainedwithpositiveprobability
over theparameters (Theorem3.7). There is anon-trivial lowerboundon thenumberof linear
regions that holds for almost every choice of the parameters (Theorem 3.8). These results
advance the maximum complexity analysis of Montúfar et al. (2022) from the perspective of
generic parameters.
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• For common parameter distributions, the expected number of activation regions is polyno-
mial in the number of units (Theorem 3.9). Moreover, the expected volume of activation re-
gions of different dimensions is polynomial in the number of units (Theorem 3.10). These
results correspond to maxout versions of results from Hanin and Rolnick (2019b) and Hanin
and Rolnick (2019a).

• Formulti-class classifiers, we obtain an upper bound on the expected number of linear pieces
(Theorem3.11) and theexpectedvolume(Theorem3.12) of thedecisionboundary, alongwitha
lower bound on the expected distance between input points and decision boundaries (Corol-
lary 3.13).

• We provide an algorithm and implementation for counting the number of linear regions of
maxout networks (Algorithm 3.1).

• Wepresentparameter initializationprocedures formaxoutnetworksmaximizing thenumber
of regions or normalizing the mean activations across layers (similar to Glorot and Bengio
2010; He et al. 2015), and observe experimentally that these can lead to faster convergence of
training.

We continue with Chapter 4 based on Tseran and Montúfar (2023), in which we study the gra-
dients of maxout networks. The analysis is based on the input-output Jacobian. We discover that,
in contrast to ReLU networks, when initialized with a zero-mean Gaussian distribution, the dis-
tribution of the input-output Jacobian of a maxout network depends on the network input, which
may lead to unstable gradients and training difficulties. Nevertheless, we compute bounds on the
moments of the gradients of maxout networks depending on the parameter distribution and the
network architecture and derive a rigorous parameter initialization strategy for wide networks and
several implications for stability and expressivity. Our results can be summarized as follows.

• For expected gradients, we derive stochastic order bounds for the directional derivative of the
input-outputmapof a deep fully-connectedmaxoutnetwork (Theorem4.1) aswell as bounds
for themoments (Corollary 4.2). Additionally, we derive equality in distribution for the direc-
tional derivatives (Theorem 4.3), based on which we also discuss the moments (Remark 4.4)
inwidenetworks. We furtherderive themomentsof theactivation lengthof a fully-connected
maxout network (Corollary 4.5).

• We rigorously derive parameter initialization guidelines for wide maxout networks prevent-
ing vanishing and exploding gradients and formulate architecture recommendations. We
experimentally demonstrate that they make it possible to train standard-width deep fully-
connected and convolutional maxout networks using simple procedures (such as SGD with
momentumandAdam), yielding higher accuracy than other initializations or ReLUnetworks
on image classification tasks.
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• We derive several implications refining previous bounds on the expected number of linear re-
gions (Corollary4.6), andnewresults on lengthdistortion (Corollary4.7) and theNTK (Corol-
lary 4.9).

1.3 Overview of the computational results

As a result of the research in this thesis, we developmultiple experiments and helpful components.
The code for them is public. The implementations relevant for Chapter 3 are available at https:
//github.com/hanna-tseran/maxout_complexity and for Chapter 4, in https://github.
com/hanna-tseran/maxout_expected_gradients.

Specifically, https://github.com/hanna-tseran/maxout_complexity contains the fol-
lowing routines implemented in Python using PyTorch library (Paszke et al., 2019) that can be used
for maxout and ReLU networks, where applicable:

• Implementations of the maxout fully-connected networks;

• Approximate and exact computation of the number of linear regions;

• Exact computation of the number of linear pieces in the decision boundary;

• Computation of the formulas for the upper bounds on the expected number of linear regions
and pieces in the decision boundary for maxout networks from Chapter 3;

• Plots of the linear regions and decision boundary in a 2D slice of the input space determined
by three data points;

• Computation of the routines aboveduring the network training on theMNISTdataset (LeCun
and Cortes, 2010);

• Implementations of the various maxout network parameter initialization procedures
described in Chapter 3.

The second repository, https://github.com/hanna-tseran/maxout_expected_
gradients, contains the following components in Python implemented using Tensorflow library
(Martín Abadi et al., 2015) that can, similar to the tools above, be used for maxout and ReLU
networks, where applicable:

• Implementations of the maxout fully-connected and convolutional neural networks;

• Implementations of the maxout andmax-pooling initializations;

• Experiments training networks onMNIST (LeCun and Cortes, 2010), Iris (Fisher, 1936), Fash-
ion MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10 and CIFAR-100 datasets
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(Krizhevsky et al., 2009) using SGD with Nesterov momentum and Adam optimizer Kingma
and Ba (2015);

• Expectationof thedirectional derivative of the input-outputmap forwidth-2 fully-connected
networks with inputs inR2;

• Estimation of the mean and interquartile range of the squared gradients with respect to the
network weights;

• Estimation of the activation length and its comparison to the formula from Chapter 4;

• Estimation of the value of the cosine appearing in the statement of Theorem 4.3 in Chapter 4
depending on the network initialization, and the network width and depth;

• Plots of the square norm of the directional derivative of the input-output map of a maxout
network for a fixed random direction with respect to the weights, plotted as a function of the
input;

• Plots for the secondmoment of the largest order statistic in a sample ofK standardGaussians
Ξ(N(0, 1),K) for different sample sizesK .

1.4 Discussion

Conclusion

In this thesis, we have contributed to the understanding of the expected behavior of deep maxout
neural networks and extended the previous line of work investigating the expected behavior of net-
works with single-argument activation functions (Hanin and Rolnick, 2019b,a, 2018), particularly
ReLU networks, to the multi-argument case. For maxout networks, we observe that their practical
complexity is far fromthe theoreticalmaximum,derive an initializationprocedureprovably improv-
ing the optimizationwith gradient descent, and obtain several implications for the expressivity and
neural tangent kernel. We support our findings with multiple experiments. We believe this line of
work can advance the research of neural network activation functions beyond the common choices
and serve as a platform for the analysis of more complicated neural network architectures, such as
graph neural networks and transformers.

Limitations

• In our theory, we have considered only fully connected networks. However, our experiments
indicate that the subset of our results on gradient moments and network initialization also
holds for CNNs, though a theoretical analysis of CNNs is yet to be conducted.
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• By design, the results on the expected complexity of maxout networks focus on parameter
distributions that have a density.

• Even though our proposed initialization of a maxout network is optimal in the sense of the
criteria specified in Chapter 4, our results are applicable only when the weights are sampled
fromN(0, c/fan-in) for some c.

Further directions

Multiple exciting further directions can build on the work in this thesis. They include the following
topics:

• Extension of the results to architectures that are more involved than feedforward fully-
connected maxout networks and employ multi-argument functions. One example is graph
neural networks, which use multi-argument aggregation functions, including the maximum
aggregation function;

• Exploration of the benefits of maxout units to architectures that use dropout, such as trans-
formers;

• Extension of the results on the expected number of linear regions to a fine-grained descrip-
tion of the distribution of activation regions over the input space depending on the parameter
distribution;

• Analysis of the relationship between the expected complexity of the networks at initialization
and the speed of convergence and implicit biases in gradient descent;

• Extension of the presented results on the expected complexity to specific types of parame-
ter distributions, including those that do not have a density or those one might obtain after
training;

• Investigation of the effects of the initialization strategies stabilizing the initial gradients dur-
ing later stages of training.

1.5 Other projects developed during the Ph.D. studies

In addition to the topics discussed in this thesis, during the Ph.D., I have worked on analyzing the
loss landscape of mildly overparametrized ReLU networks and designing amemory-augmented ef-
ficient transformer-basedmodel. These projects are absent in themaindiscussion since they are not
directly related to themain subject of the thesis,which is the expectedbehavior ofmaxoutnetworks.
However, these studies address related questions from complementary angles.
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The project on the loss landscape focuses on the behavior of mildly-overparametrized neural
networks. It further advances the line of work on the loss landscape analysis to practical scenarios,
while the previous studies often focused on the overparametrized case or had to introduce assump-
tions that might not hold in practice. Hence, it shares goals with the investigation of the expected
network behavior. Correspondingly, the Turing Machine Transformer project studies how to im-
prove a transformer architecture by making the attention mechanismmore efficient. Similar to the
maxout network analysis, such research helps understand and improve neural network architec-
tures.

Below I outline the summary of these two projects.

Mildly overparametrized ReLU networks have a favorable loss landscape1 In Karhadkar et al.
(2023), we consider the loss landscape of mildly overparametrized ReLU networks. In general, the
optimization landscape of neural networks has been a topic of enormous interest over the years. A
particularly puzzling question iswhybad localminimadonot seem to be a problem for training. We
study the loss landscape of two-layer mildly overparametrized ReLU neural networks on a generic
finite input dataset for the squared error loss. Our approach involves bounding the dimension of the
sets of local and global minima using the rank of the Jacobian of the parameterizationmap.

In contrast to previous related works, we can formulate our results for ReLU activations rather
than LeakyReLU or other smooth activation functions. Unlike, for instance, Soudry and Carmon
(2016), we do not assume dropout noise on the network outputs; contrary to Safran and Shamir
(2018), we do not assume any particular distribution on our datasets. Using results on random bi-
narymatrices, we show thatmost activation patterns correspond to parameter regionswith no bad
differentiable local minima. Furthermore, for one-dimensional input data, we show that most ac-
tivation regions realizable by the network contain a high dimensional set of global minima and no
bad local minima. We experimentally confirm these results by finding a phase transition frommost
regions having full rank Jacobian to many regions having deficient rank depending on the amount
of overparametrization.

TuringMachineTransformer forunboundedsequenceprocessing2 Multi-head self-attention
is crucial to the transformer architecture (Vaswani et al., 2017). However, the amount of compu-
tation it performs quadratically depends on the input length, and besides, standard transformers
can work only with inputs of fixed length. Furthermore, theoretical limitations make it challeng-
ing for these models to represent hierarchical structures (Hahn, 2020). These issues make applying

1Karhadkar et al. (2023), under review. This is jointworkwithKedarKarhadkar,MichaelMurray, andGuidoMontúfar.
My main contribution is to experiments. Specifically, I conducted experiments on the estimation of the percentage of
randomly sampledactivation regions containingaglobalminimumof the loss, participated in theexperiments estimating
the probability of the Jacobian being of full rank, and helped with the preprint preparation.

2Under review. This is joint work with Cheng Wang. The project was carried out during the internship at Amazon
at Berlin Machine Learning team between 15.11.2022 – 15.03.2023. I contributed to the model design, implemented the
experiments, and wrote the paper jointly with ChengWang.
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transformer-basedmodels to applications such as long chatbot conversations or document embed-
ding problematic.

In this work, following the idea of augmenting transformers with external memory, introduced
to allow for extended contexts, we develop a novel approach based on the Neural Turing Machine
(Graves et al., 2014). Previously, Ebrahimi et al. (2020) observed that a transformermight work as a
pushdown automaton (PDA) which uses a stack as its memory. Since the Turing machine is prov-
ablymore powerful than the PDA in terms of the set of languages it can recognize, and an extension
based on the Neural Turing Machine is Turing complete, we expected it to be more efficient than
similar memory-augmented transformers. Consequently, we present a modification of the trans-
former architecture based on the Neural Turing Machine. It reduces the space and time complexity
of self-attention, allows processing sequences of any length, and is better rooted in theory than sim-
ilarmodels. Weperforma series of experiments on several datasets comparing thememory capacity
of the introducedmodel to a vanilla transformer.
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Background

2.1 Network expressivity

The expressive power or capacity of a given network corresponds to the richness of the class of func-
tions it can represent. A substantial number of works has considered this question, for example,
Pascanu et al. (2013);Montufar et al. (2014); Bianchini and Scarselli (2014); Poole et al. (2016); Raghu
et al. (2017); Serra et al. (2018); Kileel et al. (2019); Xiong et al. (2020); Bodnar et al. (2021). Particu-
larly upper bounds on the expressivity measures have been studied a lot. The common conclusion
for different complexity measures is that their upper bounds grow exponentially with the network
depth, which has been proposed as an explanation of the effectiveness of deeper networks.

However, a question onemight be particularly interested in is the expected complexity of neural
networks that one can observe in practice andhow far it is from themaximum theoretically possible
complexity. In this thesis, we continue the line of work started byHanin and Rolnick (2019a,b), who
analyzed the expected behavior of ReLU networks. Advancing this course of study, we investigate
the expected behavior of maxout networks, including the question of the expected complexity at
initialization time, where the expectation is with respect to the distribution of the network param-
eters.

2.1.1 Connection to approximation

In this section, we expand on the connection between the analysis of neural network expres-
sivity and approximation properties following, to a certain extent, the discussion by Telgarsky
(2021). Consider the following setting. Given a dataset (X, y), X ∈ Rn×n0 , y ∈ Rn, a model
computing function f(x), and a loss function ℓ : Rn×n0 × Rn → R, we suffer empirical risk
R̂(f) = 1/n

∑n
i=1 ℓ(f(xi), yi) on a training set. For the test data, consider population risk

R(f) = E[ℓ(f(x), y)]. Additionally, consider an optimization algorithm choice f̂ ∈ F , where F
is a hypothesis class, and f∗ ∈ F is the solution with the minimum risk from the hypothesis class.
Following a classical point of view, the population risk for f̂ ∈ F can be decomposed into the
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following terms: generalization, concentration/generalization, optimization, and approximation
errors. Specifically,

R(f̂) = R(f̂)− R̂(f̂)︸ ︷︷ ︸
generalization error

+ R̂(f̂)− R̂(f∗)︸ ︷︷ ︸
optimization error

+ R̂(f∗)−R(f∗)︸ ︷︷ ︸
concentration/generalization error

+ R(f∗)︸ ︷︷ ︸
approximation error

.

Out of these terms, approximation error is the one that is the most related to expressivity. The
study of approximation errors of neural networks and expressivity are closely connected, and some-
times the terms are used interchangeably (Gühring et al., 2020). However, in contrast to the approx-
imation error analysis, expressivity usually refers to describing the functions that neural networks
can represent exactly, and this is the expressivity definition wewill be using in this thesis.

The classical results on approximation in neural networks are the universality theorems due to
Hornik et al. (1989); Cybenko (1989); Funahashi (1989). These works discuss similar statements,
and, for instance, omitting the details, Hornik et al. (1989) proved that there is a single hidden layer
feedforward network that approximates anymeasurable function to any desired degree of accuracy
on some compact setK .

However, in the results above, as approximationaccuracy tends to zero, thenetworkwidth tends
to infinity, which does not describe the practical scenarios. Furthermore, in practice, it is observed
that deep networks perform better than their shallow counterparts. Hence, the effects of network
depth on the complexity of functions computed by networks and approximation errors have re-
ceived special attention. Belowwe expand on the type of results termed “depth separation results”
that are particularly relevant to the discussion of network expressivity.

Depth separation results

The line of work concentrated on studying if there are functions that cannot be approximated by
reasonablywide shallownetworksbut canbearbitrarilywell approximatedbyafinitelywidedeeper
network is often referred to as “depth separation results” in the literature. Further,we reviewseveral
of the results of this type.

One of the earliest results of this type considers sum-product networks. A sum-product network
is a network composed of units that either compute the product of their inputs or aweighted sumof
their inputs (whereweights are strictly positive) Delalleau and Bengio (2011). ConsiderF – a family
of functions computed by a sum-product network (deep for i ≥ 2) composed of alternating product
and sum layers. Denote with n = 4i the input size. We set the network depth to 2i. Delalleau and
Bengio (2011) have shown that any shallow sum-product network computing f ∈ F must have at
least 2

√
n−1 hidden units. Note that a multi-layer sum-product network is a polynomial, and this

separation result does not imply a ReLU separation.
Telgarsky (2015, 2016) discovered the earliest proof showing that a deep network can not be ap-
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proximated by a reasonably-sized wide shallow network. Consider the following function∆:

∆(x) =


2x x ∈ [0, 1/2),

2− 2x x ∈ [1/2, 1),

0 otherwise.

Telgarsky (2015, 2016) demonstrate that for anyL ≥ 2, f = ∆L2+2 is a ReLU network with 3L2 +

6 nodes and 4L2 + 4 layers, but any ReLU network g with ≤ 2L nodes and ≤ L layers can not
approximate it: ∫

[0,1]
|f(x)− g(x)|dx ≥ 1

32
.

The proof idea behind this statement is to upper bound the number of linear regions in a ReLU
network. Since thenumberof linear regionsgrowspolynomially inwidthbut exponentially indepth
(Montufar et al., 2014),we canuse the region countingargument to showthat reasonably sized shal-
low networks cannot approximate the goal function. Notice that this result is naturally connected
to the analysis of the expressivity of neural networks in terms of the number of linear regions.

2.1.2 Connection tomemorization

The results mentioned above considered continuous function approximation. Another related field
of study is the investigation of the memorization capabilities of neural networks. Memorization
refers to the phenomenon that a large enough network can memorize an entire dataset, meaning
that if givenN data points, the network can learn the function they represent. Theseworks address
whether deeper networks require fewer parameters tomemorize the training data, which is related
to understanding the effects of the network depth on its expressivity. Below we summarize the re-
sults from Baldi and Vershynin (2019) of this type.

Baldi and Vershynin (2019) considered threshold functions as activations. They define the ca-
pacity of a neural architectureA(n1, n2, . . . , nL) as the binary logarithmof the number of different
functions f : Hn1 → HnL it can compute. They show that for a neural architectureA(n1, . . . , nL)
withL ≥ 2 layers, assuming that the number of nodes in each layer satisfiesnj > 18 log2(Lnk) for
any pair j, k such that 1 ≤ j < k ≤ L, its capacity is

C(n1, . . . , nL) � min(n1, . . . , nL)
L−1∑
k=1

nknk+1.

Here the notation a � b means that there exist two positive absolute constants c1, c2, such that
c1b ≤ a ≤ c2b. Baldi and Vershynin (2019) conclude that while shallow networks compute more
functions than deep networks, the functions computed by deep networks aremore regular, in terms
of avoiding overfitting.
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2.1.3 Complexity measures

Previousworkshave introducedvariousmeasures of network expressivity. For instance, thenumber
of linear regions, distortion of the length of the curve as it passes through the network, and topo-
logical complexity of the input space. In this thesis, we consider the number of regions of maxout
networks in Chapters 3 and 4, and the curve length distortion for maxout networks in Chapter 4.
Belowwe expand on several of the measures in more detail.

Number of linear regions

Consider the networks with piece-wise linear activation functions, such as ReLU and maxout unit
activation functions. Then the functions computed by such networks are piece-wise linear, and we
can define the notion of a linear region. Specifically, let f : Rn0 → R be a piecewise linear function.
A linear region of f is a maximal connected subset of Rn0 on which f has a constant gradient. See
Figure 2.1 for the illustration of linear regions of a network.

For neural networks with piece-wise linear activation functions, the number of activation re-
gions serves as a complexity measure and summary description, which has proven useful in the in-
vestigation of approximation errors, Lipschitz constants, speed of convergence, implicit biases of
parameter optimization, and robustness against adversarial attacks. In particular, Pascanu et al.
(2014);Montufar et al. (2014); Telgarsky (2015, 2016) obtaineddepth separation results showing that
deepnetworks can represent functionswithmanymore linear regions than anyof the functions that
shallownetworkswith the samenumber of units or parameters can represent. This implies that cer-
tain tasks require enormous shallow networks but can be solvedwith small deep networks. The ge-
ometry of the boundaries between linear regions has been used to study function-preserving trans-
formations of the network weights (Phuong and Lampert, 2019; Serra et al., 2020) and robustness
(Croce et al., 2019; Lee et al., 2019a). Steinwart (2019) demonstrated empirically that the distribu-
tion of regions at initialization could be related to the speed of convergence of gradient descent, and
Williams et al. (2019); Jin and Montúfar (2023) related the density of breakpoints at initialization
to the curvature of the solutions after training. The properties of linear regions concerning training
have been recently studied by Zhang andWu (2020), and the number of linear regions of a shallow
univariate ReLU network after optimization has been analyzed in Safran et al. (2022). The number
of regions has also been utilized to study the eigenvalues of the neural tangent kernel and Lipschitz
constants (Nguyen et al., 2020).

Especially the maximum number of linear regions has been studied intensively. In particular,
Montúfar (2017); Serra et al. (2018) improved the upper bounds from Montufar et al. (2014) by ac-
counting for output dimension bottlenecks across layers. Hinz and Van de Geer (2019) introduced
a histogram framework for a fine-grained analysis of such dimensions in ReLU networks. Based on
this, Xie et al. (2020); Hinz (2021) obtained still tighter upper bounds for ReLU networks. Sharp up-
per bounds on the number of linear regions of fully-connected maxout networks were obtained in
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Linear regions
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Figure 2.1: Left: Shown is a piecewise linear functionR2 → R represented by a networkwith a layer
of two rank-3maxout units for a choice of the parameters. The input space is subdivided into linear
regions. Right: Shown is the number of linear regions of a 3-layer maxout network over a portion of
the input space as a function of a 2D affine subspace of parameter values θ(ξ1, ξ2). Shown are also
two examples of the input-space subdivisions of functions represented by the network for different
parameter values. As the figure illustrates, the function taking parameters to the number of regions
is rather intricate. In this work, we characterize values attainedwith positive probability and upper
bound the expected value given a parameter distribution.

Montúfar et al. (2022). The maximum number of regions has been studied not only for fully con-
nected networks but also convolutional neural networks (Xiong et al., 2020), graph neural networks
(GNNs), andmessage passing simplicial networks (MPSN) (Bodnar et al., 2021).

Expected number of linear regions Although the maximum possible number of regions gives
useful complexity bounds and insights into different architectures, in practice, one may be more
interested in the expected behavior for typical choices of the parameters. The first results on the
expected number of regionswere obtained by Hanin and Rolnick (2019a,b) for the case of ReLU net-
works or single-argument piecewise linear activations. They show that if one has a distribution of
parameters such that the conditional densities of bias values are bounded, and the expected gra-
dients of activation values are bounded, then the expected number of linear regions can be much
smaller than the maximum theoretically possible number. Specifically, while upper bounds on the
maximum number of linear regions grow exponentially with the network depth, upper bounds on
their expected number do not depend on the network depth and grow polynomially with the total
number of neurons in the network. Moreover, they obtain bounds for the expected number and vol-
ume of lower dimensional linear pieces of the represented functions. These results do not directly
apply to the case of maxout units, and in Chapter 3, we adapt the proofs to obtain corresponding
results for maxout networks, refining the bounds further in Chapter 4.
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Curve distortion

Another useful measure of the complexity of the function computed by a neural network is the dis-
tortionof the lengthof an input curveas it passes through thenetwork. Poole et al. (2016) studied the
propagation of Riemannian curvature through wide neural networks using a mean-field approach,
and later, a relatednotionof “trajectory length”wasconsideredbyRaghuet al. (2017). Itwasdemon-
strated that thesemeasures cangrowexponentiallywith thenetworkdepth,whichwas linked to the
ability of deep networks to “disentangle” complex representations. Based on these notions, Murray
et al. (2022) studies how to avoid rapid convergence of pairwise input correlations, vanishing, and
exploding gradients.

Expected curve distortion In contrast to the results above, Hanin et al. (2021) proved that for a
ReLU network with He initialization, the length of the curve does not grow with depth and even
shrinks slightly. Similar results are established for maxout networks in Chapter 4.

Topological complexity

Another interesting network complexity measure is the topological complexity introduced in Bian-
chini and Scarselli (2014). Let fN : Rn → R be the function implemented by a feedforward neural
networkN , with n inputs and a single output. Complexity of the function fN is then measured by
the topological complexity of the set SN = {x ∈ Rn|fN (x) ≥ 0}.

Bianchini and Scarselli (2014) prove the following statements. First, for network architectures
with a single hidden layer, the sum of the Betti numbers,B(SN ), grows at most polynomially with
respect to the number of the hidden units h, i.e.,B(SN ) ∈ O(hn), where n is the input dimension.
Second, for deep networks,B(SN ) can grow exponentially in the number of the hidden units, i.e.,
B(SN ) ∈ Ω(2h).

2.1.4 Complexity of maxout networks

Most previous works investigating neural network expressivity have focused on ReLUs or single-
argument activation functions.

Firstly, consider the number of linear regions as themeasure of the network complexity of ReLU
networks. The linear regions of individual layers are described by hyperplane arrangements, which
have been investigated since the 19th century (Steiner, 1826; Buck, 1943; Zaslavsky, 1975). Hence, the
main challenge in these works is the description of compositions of several layers. In contrast, the
linear regions of maxout layers are described by complex arrangements that are not so well under-
stood yet. We describe this problem inmore detail in Section 2.3.3.

Consequently, the study of maxout networks poses significant challenges already at the level of
individual layers and, in fact, single units. For maxout networks, the maximum possible number of
regions has been studied by Pascanu et al. (2014);Montufar et al. (2014); Serra et al. (2018). Recently,
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Montúfar et al. (2022) obtained counting formulas and sharp (asymptotic) upper bounds for the
number of regions of shallow (deep) maxout networks. However, they focused on the maximum
possible value rather than the generic behavior we investigate in this thesis.

Secondly, there are noworkswe knowof investigating the complexity ofmaxout networks from
the angle of curve distortion, as we do in Chapter 4.

2.2 Parameter initialization in neural networks

Neural network initialization can have different purposes besides ensuring the training is possible.
Both in Chapter 3 and 4, our main goal concerning initialization is to obtain a stable approach to
the parameter initialization in maxout networks. We consider a network initialization stable if it
avoids vanishing and exploding gradients. The vanishing and exploding gradient problemhas been
known since thework of Hochreiter (1991). It refers to gradient updates approaching zero or becom-
ing extremely large. Exploding or vanishing gradients can prevent the optimization from starting,
or, if the training can begin, makes choosing an appropriate learning rate harder and slows training
(Sun, 2019).

Common approaches to address this difficulty besides using an appropriate initialization in-
clude the choice of specific architectures, e.g., LSTMs (Hochreiter, 1991) or ResNets (He et al., 2016),
and normalization methods such as batch normalization (Ioffe and Szegedy, 2015) or explicit con-
trol of the gradientmagnitudewith gradient clipping (Pascanu et al., 2013). These techniques can be
combined with initialization to achieve even better performance. For instance, in Section 4.J.3, we
observe that the initialization strategy proposed formaxout networks in Chapter 4 is still beneficial
when training with batch normalization.

In this thesis, we focus on approaches based on parameter initialization that control the acti-
vation length and parameter gradients (LeCun et al., 2012; Glorot and Bengio, 2010; He et al., 2015;
Gurbuzbalaban and Hu, 2021; Zhang et al., 2019; Bachlechner et al., 2021). Two of the most well-
known examples of such initialization are Glorot (Xavier) initialization for tanh networks (Glorot
and Bengio, 2010) and He (Kaiming) initialization for ReLU networks (He et al., 2015). Glorot and
Bengio (2010) studied forward and backward passes to obtain initialization recommendations for
tanh activation function. Specifically, they suggest initializing weights in the lth layer as i.i.d. sam-
ples from a Gaussian distributionN(0, 2/nl−1 + nl) or from a uniform distributionU [−a, a], a =√
6/(nl−1 + nl). He et al. (2015), in a similar fashion, studied forward and backward passes of a

ReLU network. They suggest initializing weights in the lth layer of a ReLU neural network, as i.i.d.
samples from a Gaussian distributionN(0, 2/nl−1) or from a uniform distribution U [−a, a], a =√
6/nl−1. Hanin and Rolnick (2018); Hanin (2018) performed amore rigorous analysis of the gradi-

ents of ReLU networks. They also considered higher-order moments, confirmed the recommenda-
tion fromHe et al. (2015), and derived recommendations on the network architecture.
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Stable initialization of maxout networks For the first time, a stable initialization specific to
maxout networkswasmentioned in Sun et al. (2018), whoderived an initialization strategy inspired
by Glorot and Bengio (2010); He et al. (2015) for rankK = 2maxout networks. Taking a similar ap-
proach, we derive the first stable initialization for maxout networks with units of higher ranks in
Chapter 3. There we consider balancing the forward pass, assuming Gaussian or uniform distri-
bution on the pre-activation features of each layer. However, this assumption is not fully justified.
Continuing this line of work, in Chapter 4, we analyze maxout network gradients, including the
higher order moments, following the ideas in Hanin and Rolnick (2018); Hanin (2018), and provide
a rigorous justification for the initialization suggested in Chapter 3.

Other types of initialization Asmentioned above, the neural network initializationmethods can
be designed for different purposes. One is to ensure that the complexity of the function represented
by a neural network is as high as possible. To achieve this, one can ensure the network has themaxi-
mumnumber of regions in the input space at initialization. Such a description of parameter choices
maximizing the number of regions for a layer of maxout units has been given by Montúfar et al.
(2022, Proposition 3.4). Another technique, suggested by Steinwart (2019) for ReLU networks, is to
initialize parameters in such a way that the nonlinear locus of different units of a network is evenly
spaced over the input space at initialization, which could lead to faster convergence of training. We
consider several initializations of these other types for maxout networks in Chapter 3.

2.3 Tropical perspective on neural networks with piece-wise linear
activation functions

Tropical geometry can be utilized to understand neural networks with piece-wise linear activation
functions, includingmaxoutandReLUactivations. This approachwasfirst formalized inZhangetal.
(2018). The tropical geometry interpretation allows us to understand better the complexity ofmax-
out units and their difference from ReLUs in Section 2.3.3 below. Additionally, we use statements,
which are based on the tropical geometry approach, to prove a generic lower bound on the number
of linear regions (Theorem 3.8) in Chapter 3. Outside this work, the tropical geometry was the ba-
sis for deriving sharp upper bounds on the number of linear regions ofmaxout networks (Montúfar
et al., 2022), which bounds the expressivity of maxout networks and is closely related to this thesis
topic.

Further, in Sections 2.3.1 and 2.3.2, we briefly recap the basics of tropical geometry and its appli-
cation to neural networks, omitting many details, and follow Zhang et al. (2018). A detailed intro-
duction to tropical geometry can be found inMaclagan and Sturmfels (2015).
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2.3.1 Basic tropical geometry definitions

Themost fundamental component of tropical algebraic geometry is the tropical semiring T := (R∪
{−∞},⊕,�). The two operations ⊕ and �, called tropical addition and tropical multiplication, re-
spectively, are defined as follows. For x, y ∈ R, their tropical sum is

x⊕ y := max{x, y},

and their tropical product is

x� y := x+ y.

Additionally, the tropical quotient of x over y is defined as

x� y := x− y.

LetN = {n ∈ Z : n ≥ 0}. For an integer a ∈ N, raising x ∈ R to the ath power is the same as
multiplyingx to itself a times. When standardmultiplication is replaced by tropicalmultiplication,
this gives us tropical power,

x⊙a := x� · · · � x = a · x,

where the last · denotes the standard product of real numbers. We will write xa instead of x⊙a for
notation simplicity.

Then, a tropical monomial in d variables x1, . . . , xd is an expression of the form

c� xa11 � xa22 � · · · � xadd ,

where c ∈ R ∪ {−∞} and a1, . . . , ad ∈ N. As a shorthand, we will write a tropical monomial as
cxα whereα = (a1, . . . , ad) ∈ Nd and x = (x1, . . . , xd).

Subsequently, using the notation above, a tropical polynomial is defined as

f(x) =

r∑
i=0

cix
αi ,

where the sum is the tropical sum,αi = (ai1, . . . , aid) ∈ Nd and ci ∈ R ∪ {−∞}, i = 1, . . . , r.
Finally, a tropical rational function is the tropical quotient of two tropical polynomials:

f(x)� g(x) = f(x)− g(x).

Tropical hypersurfaces prove to be useful for analyzing linear regions of neural networks. A trop-
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ical hypersurface of a tropical polynomial f : Rd → R is defined as

Trop(f) := {x ∈ Rd : cix
αi = cjx

αj = f(x) for i 6= j two distinct monomials}.

2.3.2 Tropical geometry of neural networks

Zhang et al. (2018, Theorem 5.2) established that a feedforward neural network under assumptions
that weight matrices are integer-valued and ReLU is used as an activation function is a function
ν : Rd → Rp whose coordinates are tropical rational functions of the input, i.e.,

ν(x) = F (x)�G(x),

whereF andG are tropical polynomialmaps. Thus ν is a tropical rationalmap. A similar statement
holds for a maxout network, which is used inMontúfar et al. (2022).

One of the questions considered in this thesis is the complexity of the function computed by
a neural network in terms of the number of linear regions in the input space. Using the statement
above stating that a neural network can be regarded as a tropical rationalmap,we can apply tropical
geometry to investigate this issue in the following way.

For a tropical polynomial f(x) =
∑r

i=0 cix
αi define its Newton polytope as the convex hull of

α1, . . . , αr ∈ Nd. Specifically,

∆(f) := conv{αi ∈ Rd : ci 6= −∞, i = 1, . . . , r}.

Then the liftedNewtonpolytope is definedasP(f) := conv{(αi, ci) ∈ Rd×R : i = 1, . . . , r}. It is
known that thenumber of vertices inP(f)provides anupper boundon thenumber of linear regions
of f , and hence, an upper bound on the number of linear regions of a tropical rational function f�g
(Zhang et al., 2018, Section 3).

2.3.3 Difference between linear regions of ReLU andmaxout networks

Tropical geometry also provides ahelpful framework for understanding thedifference in complexity
of the linear regions corresponding to ReLU andmaxout networks. A layer of ReLUs is the following
map:

Rn → Rm; x 7→


max{0,W1x+ b1}

...
max{0,Wmx+ bm}

 .
It has linear regions separated by a hyperplane arrangement, which has been studied since the 19th
century (Steiner, 1826; Buck, 1943; Zaslavsky, 1975), and the number of linear regions corresponding
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(a) One layer of ReLUs subdivides the input
space into linear regions by slicing it with hy-
perplanes. The number of linear regions is upper
bounded by the number of vertices in a zono-
tope (Minkowski sum of line segments).

(b) One layer ofmaxout units subdivides the in-
put space into linear regions by slicing it with
tropical hypersurfaces. The number of linear re-
gions is upper bounded by the number of ver-
tices in aMinkowski sum of polytopes.

Figure 2.2: Linear regions of ReLU networks vs. linear regions of maxout networks. Observe that
regions of a maxout network are created by the intersection of more complex objects.

to a single layer of ReLUs is upper bounded by the number of vertices in zonotopes (Minkowski sum
of line segments). Therefore, the main challenge for ReLU networks is in studying the composition
of layers. In contrast, a layer of maxout units is given by the followingmap

Rn → Rm; x 7→


max{W11x+ b11, . . . ,W1Kx+ b1K}

...
max{Wm1x+ bm1, . . . ,WmKx+ bmK}

 ,
andhas regions separatedbya tropicalhypersurfacearrangement. Asa result, for amaxoutnetwork,
the number of linear regions corresponding to one layer is upper bounded by the number of vertices
in a Minkowski sum of polytopes. These objects are less studied than zonotopes, so understanding
even one layer of maxout networks is challenging. We illustrate this issue in Figure 2.2.

2.4 NTK and implicit bias

Neural tangent kernel (NTK) was introduced in Jacot et al. (2018). Consider SGD update to one of
the network parameters θp:

∆θp = −η ∂L
∂θp

, p = 1, . . . , P,

where η ∈ R is the learning rate, L : RP → R is an empirical loss, and P = |Θ| is the total
number of parameters in a neural network. The loss L is defined as 1/B

∑B
j=1 ℓ(N (xj ; Θ), yj),

where ℓ : Rn0 × RnL → R is a per-sample cost function, and B is a batch size. Using Taylor
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expansionaround thenetworkparameters at initializationand the chain rule,weget that theupdate
to the function computed by the networkN is

∆N (x) = −η 〈KN (x, ·),∇L(·)〉 = − η

B

B∑
j=1

KN (x,xj)
∂ℓ

∂N
(xj , yj).

HereKN (x,x′) is the NTK defined as

KN (x,x′) =
P∑

p=1

∂N
∂θp

(x)
∂N
∂θp

(x′).

Consider a fully connected network with a Lipschitz, twice differentiable nonlinearity function
σ : R → R, with bounded second derivative. Assume that the NTK parametrization is applied to
the pre-activations, meaning that they are normalized in the following way: 1/

√
nlW

(l)x+ βb(l),
where the scalar β > 0 is a parameter which allows tuning the influence of the bias on the train-
ing. Additionally, assume that the parameters are initialized as i.i.d. GaussiansN(0, 1). Then, Jacot
et al. (2018) observed thatwhen the network depth is fixed, and thewidth tends to infinity, the NTK
KN simplifies and stays frozen during training at the infinite width limit of its average E[KN ] at
initialization, where the expectation is with respect to the distribution of the network parameters.
Hence, the NTK of a finite network can be approximated by its expectation. NTK has proven useful
for studying neural network optimization and its implicit biases, particularly for overparametrized
networks. Numerous works analyzed NTK or used it in their studies, such as Chizat et al. (2019);
Arora et al. (2019); Lee et al. (2019b);Williams et al. (2019); Dukler et al. (2020); Bowman andMont-
ufar (2022); Jin andMontúfar (2023).

However, Hanin and Nica (2020a) showed that if both the depth and width of a ReLU network
tend to infinity, the NTK does not converge to a constant in probability. By studying the expectation
of the gradients of a maxout network in Chapter 4, we show in Corollary 4.9 that similarly to ReLU,
the NTK of maxout networks does not converge to a constant when both width and depth are sent
to infinity.
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On the expected complexity of maxout
networks

3.1 Introduction

Weare interested in the functionsparametrizedby artificial feedforwardneural networkswithmax-
out units. Maxout units compute parametric affine functions followed by a fixed multi-argument
activation function of the form (s1, . . . , sK) 7→ max{s1, . . . , sK} and can be regarded as a natural
generalization of ReLUs,which have a single-argument activation function s 7→ max{0, s}. For any
choice of parameters, these networks subdivide their input space into activation regions where dif-
ferent pre-activation features attain themaximumand the computed function is (affine) linear. We
are concerned with the expected number of activation regions and their volume given probability
distributions of parameters, aswell as corresponding properties for the decision boundaries in clas-
sification tasks. We show that different architectures can attain very different numbers of regions
with positive probability, but for parameter distributions forwhich the conditional densities of bias
values and the expected gradients of activation values are bounded, the expected number of regions
is at most polynomial in the rankK , and the total number of units.

Activation regions of neural networks For neural networks with piecewise linear activation
functions, the number of activation regions serves as a complexity measure and summary descrip-
tion, which has proven useful in the investigation of approximation errors, Lipschitz constants,
speed of convergence, implicit biases of parameter optimization, and robustness against adversarial
attacks. In particular, Pascanu et al. (2014); Montufar et al. (2014); Telgarsky (2015, 2016) obtained
depth separation results showing that deep networks can represent functions with many more
linear regions than any of the functions that can be represented by shallow networks with the
same number of units or parameters. This implies that certain tasks require enormous shallow
networks but can be solved with small deep networks. The geometry of the boundaries between
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linear regions has been used to study function-preserving transformations of the network weights
(Phuong and Lampert, 2019; Serra et al., 2020) and robustness (Croce et al., 2019; Lee et al., 2019a).
Steinwart (2019) demonstrated empirically that the distribution of regions at initialization can be
related to the speed of convergence of gradient descent, andWilliams et al. (2019); Jin andMontúfar
(2023) related the density of breakpoints at initialization to the curvature of the solutions after
training. The properties of linear regions in relation to training have been recently studied by Zhang
andWu (2020). The number of regions has also been utilized to study the eigenvalues of the neural
tangent kernel and Lipschitz constants (Nguyen et al., 2020).

Maximum number of regions Especially the maximum number of linear regions has been
studied intensively. In particular, Montúfar (2017); Serra et al. (2018) improved the upper bounds
from Montufar et al. (2014) by accounting for output dimension bottlenecks across layers. Hinz
and Van de Geer (2019) introduced a histogram framework for a fine grained analysis of such
dimensions in ReLU networks. Based on this, Xie et al. (2020); Hinz (2021) obtained still tighter
upper bounds for ReLU networks. The maximum number of regions has been studied not only for
fully connected networks, but also convolutional neural networks (Xiong et al., 2020), graph neural
networks (GNNs) andmessage passing simplicial networks (MPSN) (Bodnar et al., 2021).

Expected number of regions Although the maximum possible number of regions gives useful
complexity bounds and insights into different architectures, in practice onemay bemore interested
in the expectedbehavior for typical choices of theparameters. Thefirst results on the expectednum-
ber of regionswere obtainedbyHanin andRolnick (2019a,b) for the case of ReLUnetworks or single-
argument piecewise linear activations. They show that if one has a distribution of parameters such
that the conditional densities of bias values are bounded and the expected gradients of activation
values are bounded, then the expected number of linear regions can bemuch smaller than themax-
imum theoretically possible number. Moreover, they obtain bounds for the expected number and
volumeof lowerdimensional linear pieces of the represented functions. These results donotdirectly
apply to the case of maxout units, but we will adapt the proofs to obtain corresponding results.

Regionsofmaxoutnetworks Mostpreviousworks focusonReLUsor single-argumentactivation
functions. In this case, the linear regions of individual layers are described by hyperplane arrange-
ments, which have been investigated since the 19th century (Steiner, 1826; Buck, 1943; Zaslavsky,
1975). Hence, the main challenge in these works is the description of compositions of several lay-
ers. In contrast, the linear regions ofmaxout layers are described by complex arrangements that are
not so well understood yet. The study of maxout networks poses significant challenges already at
the level of individual layers and in fact single units. For maxout networks, the maximum possi-
ble number of regions has been studied by Pascanu et al. (2014); Montufar et al. (2014); Serra et al.
(2018). Recently, Montúfar et al. (2022) obtained counting formulas and sharp (asymptotic) upper
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bounds for the number of regions of shallow (deep)maxout networks. However, their focus was on
themaximum possible value, and not on the generic behavior, which we investigate here.

Related notions The activation regions of neural networks can be approached from several per-
spectives. In particular, the functions represented by networks with piecewise linear activations
correspond to so-called tropical rational functions and can be studied from the perspective of trop-
ical geometry (Zhang et al., 2018; Charisopoulos andMaragos, 2018). In the case of piecewise affine
convex nonlinearities, these can be studied in terms of so-called max-affine splines (Balestriero
et al., 2019). A related but complementary notion of network expressivity is trajectory length, pro-
posed by Raghu et al. (2017), which measures transitions between activation patterns along one-
dimensional paths on the input space, which also leads to depth separation results. Recent work
(Hanin et al., 2021) shows that ReLU networks preserve expected length.

Contributions We obtain the following results for maxout networks.

• Therearewidelydifferentnumbersof linear regions thatareattainedwithpositiveprobability
over theparameters (Theorem3.7). There is anon-trivial lowerboundon thenumberof linear
regions that holds for almost every choice of the parameters (Theorem 3.8). These results
advance the maximum complexity analysis of Montúfar et al. (2022) from the perspective of
generic parameters.

• For common parameter distributions, the expected number of activation regions is polyno-
mial in the number of units (Theorem 3.9). Moreover, the expected volume of activation re-
gions of different dimensions is polynomial in the number of units (Theorem 3.10). These
results correspond to maxout versions of results from Hanin and Rolnick (2019b) and Hanin
and Rolnick (2019a).

• Formulti-class classifiers, we obtain an upper bound on the expected number of linear pieces
(Theorem3.11) and theexpectedvolume(Theorem3.12) of thedecisionboundary, alongwitha
lower bound on the expected distance between input points and decision boundaries (Corol-
lary 3.13).

• We provide an algorithm and implementation for counting the number of linear regions of
maxout networks (Algorithm 3.1).

• Wepresentparameter initializationprocedures formaxoutnetworksmaximizing thenumber
of regions or normalizing the mean activations across layers (similar to Glorot and Bengio
2010; He et al. 2015), and observe experimentally that these can lead to faster convergence of
training.
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3.2 Activation regions of maxout networks

We consider feedforward neural networks with n0 inputs, L hidden layers of widths n1, . . . , nL,
and no skip connections, which implement functions of the form f = ψ ◦ ϕL ◦ · · · ◦ ϕ1. The l-th
hidden layer implements a function ϕl : Rnl−1 → Rnl with output coordinates, i.e. units, given by
trainable affine functions followedbyafixed real-valuedactivation function, andψ : RnL → RnL+1

is a linear output layer. We denote the total number of hidden units byN = n1 + · · · + nL, and
index them by z ∈ [N ] := {1, . . . , N}. The collection of all trainable parameters is denoted by θ.

We consider networks with maxout units, introduced by Goodfellow et al. (2013). A rank-K
maxout unit with n inputs implements a function Rn → R; x 7→ maxk∈[K]{wk · x + bk},
where wk ∈ Rn and bk ∈ R, k ∈ [K], are trainable weights and biases. The activation function
(s1, . . . , sK) 7→ max{s1, . . . , sK} can be regarded as a multi-argument generalization of the
rectified linear unit (ReLU) activation function s 7→ max{0, s}. TheK arguments of themaximum
are called the pre-activation features of themaxout unit. For unit z in amaxout network, we denote
ζz,k(x; θ) its k-th pre-activation feature, considered as a function of the input to the network.

For any choice of the trainable parameters, the function represented by a maxout network is
piecewise linear, meaning it splits the input space into countably many regions over each of which
it is linear.

Definition 3.1 (Linear regions). Let f : Rn0 → R be a piecewise linear function. A linear region of
f is a maximal connected subset ofRn0 on which f has a constant gradient.

Wewill relate the linear regions of the represented functions to activation regions defined next.

Definition 3.2 (Activation patterns). An activation pattern of a network with N rank-K maxout
units is an assignment of a non-empty set Jz ⊆ [K] to each unit z ∈ [N ]. An activation pattern
J = (Jz)z∈[N ] with

∑
z∈[N ](|Jz| − 1) = r is called an r-partial activation pattern. The set of all

possible activation patterns is denotedP , and the set of r-partial activation patterns is denotedPr .
An activation sub-pattern is a patternwherewedisregard allJz with |Jz| = 1. The set of all possible
activation sub-patterns is denotedS , and the set of r-partial activation sub-patterns is denotedSr .

Definition 3.3 (Activation regions). Consider a networkN withN maxout units. For any parame-
ter value θ and any activation pattern J , the corresponding activation region is

R(J, θ) :=
{
x ∈ Rn0

∣∣ argmax
k∈[K]

ζz,k(x; θ) = Jz for each z ∈ [N ]
}
.

For any r ∈ {0, . . . , n0}we denote the union of r-partial activation regions by

XN ,r(θ) :=
⋃

J∈Pr

R(J ; θ).
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By these definitions,wehave adecomposition of the input space as a disjoint unionof activation
regions,Rn0 = tJ∈PR(J, θ). See Figure 3.1. Next we observe that for almost every choice of θ, r-
partial activation regions are either empty or relatively open convex polyhedra of co-dimension r.
In particular, for almost every choice of the parameters, if r is larger thann0, the r-partial activation
regions are empty. Therefore, in our discussion we only need to consider r up to n0.

Lemma 3.4 (r-partial activation regions are relatively open convex polyhedra). Consider a maxout
network N . Let r ∈ {0, . . . , n0} and J ∈ Pr . Then for any θ, R(J, θ) is a relatively open convex
polyhedron inRn0 . For almost every θ, it is either empty or has co-dimension r.

The proof of Lemma 3.4 is given in Section 3.A. Next we show that for almost every choice of θ,
0-partial activation regions and linear regions correspond to each other.

Lemma 3.5 (Activation regions vs linear regions). Consider amaxout networkN . The set of parameter
values θ for which the represented function has the same gradient on two distinct activation regions is a null
set. In particular, for almost every θ, linear regions and activation regions correspond to each other.

The proof of Lemma 3.5 is given in Section 3.A. We note that for specific parameters, linear re-
gions can be the union of several activation regions and can be non-convex. Such a situation ismore
common in ReLUnetworks, whose units canmore readily output zero, thereby hiding the activation
pattern of the units in the previous layers.

To summarize the above observations, for almost every θ, the 0-partial activation regions are
n0-dimensional open convexpolyhedrawhich agreewith the linear regions of the represented func-
tion, and for r = 1, . . . , n0 the r-partial activation regions are co-dimension-r polyhedral pieces
of the boundary between linear regions. Next, we investigate the number of non-empty r-partial
activation regions and their volumewithin given subsets of the input space. We are concernedwith
their generic numbers, where we use “generic” in the standard sense to refer to a positive Lebesgue
measure event.

3.3 Numbers of regions attainedwith positive probability

We start with a simple upper bound.

Lemma 3.6 (Simple upper bound on the number of r-partial activation patterns). Let r ∈ N0. The
number of r-partial activation patterns and sub-patterns in a network with a total ofN rank-K maxout
units are upper bounded by |Pr| ≤

(
rK
2r

)(
N
r

)
KN−r and |Sr| ≤

(
rK
2r

)(
N
r

)
respectively.

The upper bound has asymptotic order O(N rKN+r) inK andN . The proof of Lemma 3.6 is
given in Section 3.A, where we also provide an exact but unhandy counting formula.

By definition, the number of r-partial activation patterns is a trivial upper boundon the number
of non-empty r-partial activation regions for any choice of parameters. Depending on the network
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Figure 3.1: Left: Shown is a piecewise linear function R2 → R represented by a network with a
layer of two rank-3 maxout units for a choice of the parameters. The input space is subdivided into
activation regions R(J ; θ) with linear regions separated by X1(θ). Right: Shown is the number
of linear regions of a 3-layer maxout network over a portion of the input space as a function of a
2D affine subspace of parameter values θ(ξ1, ξ2). Shown are also two examples of the input-space
subdivisions of functions represented by the network for different parameter values. More details
about this figure are given in Section 3.K. As the figure illustrates, the function taking parameters to
the number of regions is rather intricate. In this work, we characterize values attainedwith positive
probability and upper bound the expected value given a parameter distribution.

architecture, this bound may not be attainable for any choice of parameters. Montúfar et al. (2022,
Theorems 3.7 and 3.12) obtained bounds for the maximum number of linear regions. For a shallow
network with n0 inputs and a single layer of n1 rank-K maxout units it has orderΘ((n1K)n0) in
K and n1, and for a deep network with n0 inputs andL layers of n1, . . . , nL rank-K maxout units
it has order Θ(

∏L
l=1(nlK)n0) inK and n1, . . . , nL. Hence the maximum number of non-empty

activation regions can be very large, especially for deep networks.
Intuitively, linear regions have a non-zero volume and cannot ‘disappear’ under small pertur-

bations of parameters. This raises the question about which numbers of linear regions are attained
with positive probability, i.e. over positive Lebesguemeasure subsets of parameter values. Figure 3.1
shows that the number of linear regions of a maxout network is a very intricate function of the pa-
rameter values.

For a network with n0 inputs and a single layer of n1 ReLUs, the maximum number of linear
regions is

∑n0
j=0

(
n1

j

)
, and is attained for almost all parameter values. This is a consequence of the

genericbehaviorofhyperplanearrangements (seeBuck, 1943; Zaslavsky, 1975;Montufar et al., 2014).
In contrast, shallow maxout networks can attain different numbers of linear regions with positive
probability. The intuitive reason is that the nonlinear locus ofmaxout units is described not only by
linear equations 〈wi, x〉+bi = 〈wj , x〉+bj but also linear inequalities 〈wi, x〉+bi ≥ 〈wk, x〉+bk.
See Figure 3.1 for an example. We obtain the following result.

Theorem 3.7 (Numbers of linear regions).
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• Consider a rank-K maxout unit with n0 inputs. This corresponds to a network with an input layer
of size n0 and single maxout layer with a single maxout unit. For each 1 ≤ k ≤ K , there is a set of
parameter values for which the number of linear regions is k. Formin{K,n0 + 1} ≤ k ≤ K , the
corresponding set has positive measure, and else it is a null set.

• Consider a layer of n1 rank-K maxout units with n0 inputs. This corresponds to a network with
a single maxout layer, L = 1, and nL = n1. For each choice of 1 ≤ k1, . . . , kn1 ≤ K ,
there are parameters for which the number of linear regions is

∑n0
j=0

∑
S∈([n1]

j
)
∏

i∈S(ki− 1). For

min{K,n0+1} ≤ k1, . . . , kn1 ≤ K , the corresponding set has positivemeasure. HereS ∈
(
[n1]
j

)
means that S is a subset of [n1] := {1, . . . , n1} of cardinality |S| = j.

• Consider a network with n0 inputs and L layers of n1, . . . , nL rank-K maxout units,K ≥ 2, nl
n0

even. Then, for each choice of 1 ≤ kli ≤ K , i = 1, . . . , n0, l = 1, . . . , L, there are parameters
for which the number of linear regions is

∏L
l=1

∏n0
i=1(

nl
n0
(kli− 1)+ 1). There is a positive measure

subset of parameters for which the latter is the number of linear regions over (0, 1)n0 .

The proof is provided in Section 3.B. The result shows that maxout networks have a multitude
of positive measure subsets of parameters over which they attain widely different numbers of lin-
ear regions. In the last statement of the theorem we consider inputs from a cube, but qualitatively
similar statements can be formulated for the entire input space.

There are specific parameter values for which the network represents functions with very few
linear regions (e.g., setting the weights and biases of the last layer to zero). However, the smallest
numbers of regions are only attained over null sets of parameters:

Theorem 3.8 (Generic lower bound on the number of linear regions). Consider a rank-K maxout
network,K ≥ 2, with n0 inputs, n1 units in the first layer, and any number of additional nonzero width
layers. Then, for almost every choice of the parameters, the number of linear regions is at least

∑n0
j=0

(
n1

j

)
and the number of bounded linear regions is at least

(
n1−1
n0

)
.

This lower bound has asymptotic orderΩ(nn0
1 ) inK and n1, . . . , nL. The proof is provided in

Section 3.B. To our knowledge, this is the first non-trivial probability-one lower bound for amaxout
network. Note that this statement does not apply to ReLU networks unless they have a single layer
of ReLUs. In the next section we investigate the expected number of activation regions for given
probability distributions over the parameter space.

3.4 Expected number and volume of activation regions

For the expected number of activation regions we obtain the following upper bound, which corre-
sponds to amaxout version of (Hanin and Rolnick, 2019b, Theorem 10).
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Theorem 3.9 (Upper bound on the expected number of partial activation regions). LetN be a fully-
connected feed-forwardmaxout network withn0 inputs and a total ofN rankK maxout units. Suppose we
have a probability distribution over the parameters so that:

1. The distribution of all weights has a density with respect to the Lebesgue measure onR#weights.

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the values
of all other weights and biases.

3. There existsCgrad > 0 so that for any t ∈ N and any pre-activation feature ζz,k,

sup
x∈Rn0

E[‖∇ζz,k(x)‖t] ≤ Ct
grad.

4. There existsCbias > 0 so that for any pre-activation features ζ1, . . . , ζt from any neurons, the con-
ditional density of their biases ρb1,...,bt given all the other weights and biases satisfies

sup
b1,...,bt∈R

ρb1,...,bt(b1, . . . , bt) ≤ Ct
bias.

Fix r ∈ {0, . . . , n0} and let T = 25CgradCbias. Then, there exists δ0 ≤ 1/(2CgradCbias) such that for all
cubesC ⊆ Rn0 with side length δ > δ0 we have

E[# r-partial activation regions ofN inC]
vol(C)

≤


(
rK
2r

)(
N
r

)
KN−r, N ≤ n0

(TKN)n0(n0K
2n0

)
(2K)rn0!

, N ≥ n0

.

Here the expectation is takenwith respect to thedistributionofweights andbiases inN . Of particular interest
is the case r = 0, which corresponds to the number of linear regions.

The proof of Theorem 3.9 is given in Section 3.E. The upper bound has asymptotic order
O(Nn0K3n0−r) inK andN , which is polynomial. In contrast, Montúfar et al. (2022) shows that
the maximum number of linear regions of a deep network of width n is Θ((nK)

n0
n
N ), which

for constant width is exponential in N ; see Section 3.B. We present an analog of Theorem 3.9 for
networks without biases in Section 3.G.

When the rank isK = 2, the formula coincides with the result obtained previously by Hanin
and Rolnick (2019b, Theorem 10) for ReLUnetworks, up to a factorKr. For some settings, we expect
that the result can be further improved. For instance, for iid Gaussian weights and biases, one can
show that the expected number of regions of a rank K maxout unit grows only like logK , as we
discuss in Section 3.C.

Wenote that the constantsCbias andCgrad onlyneed tobeevaluatedover the inputs in the region
C . Intuitively, the bound on the conditional density of bias values corresponds to a bound on the
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density of non-linear locations over the input. The bound on the expected gradient norm of the
pre-activation features is determined by the distribution of weights. We provide more details in
Section 3.F.

For the expected volumeof the r-dimensional part of thenon-linear locus,weobtain the follow-
ing upper bound,which corresponds to amaxout version of (Hanin and Rolnick, 2019a, Corollary 7).

Theorem 3.10 (Upper bound on the expected volume of the non-linear locus). Consider a bounded
measurable set S ⊂ Rn0 and the settings of Theorem 3.9 with constantsCgrad andCbias evaluated over S.
Then, for any r ∈ {1, . . . , n0},

E[voln0−r(XN ,r ∩ S)]
voln0(S)

≤ (2CgradCbias)
r

(
rK

2r

)(
N

r

)
.

Theproof of Theorem3.10 is given in Section 3.D.When the rank isK = 2, the formula coincides
with the result obtained previously by Hanin and Rolnick (2019a, Corollary 7) for ReLU networks. A
table comparing the results for maxout and ReLU networks is given in Section 3.E.

3.5 Expected number of pieces and volume of the decision boundary

In the case of classification problems, we are primarily interested in the decision boundary rather
than theoverall function. WedefineanM -class classifier by appendinganargmaxgate to anetwork
withM outputs. The decision boundary is then a union of certain r-partial activation regions for
the network with a maxout unit as the output layer. For simplicity, here we present the results for
the n0 − 1-dimensional regions, which we call ‘pieces’, and present the results for arbitrary values
of r in Section 3.H. The number of pieces of the decision boundary is at most equal to the number
of activation regions in the original network times

(
M
2

)
. A related statement appeared in Alfarra

et al. (2020). For specific choices of the network parameters, the decision boundary does intersect
most activation regions and can have as many as Ω(M2

∏L
l=1(nlK)n0) pieces (see Section 3.H).

However, in general, this upper bound can be improved. For the expected number of pieces and
volume of the decision boundary, we obtain the following results. We write XDB for the decision
boundary, andXDB,r for the union of r-partial activation regions which include equations from the
decision boundary (generically these are the co-dimension-r pieces of the decision boundary).

Theorem3.11 (Upper bound on the expected number of linear pieces of the decision boundary). Let
N be a fully-connected feedforward maxout network, with n0 inputs, a total ofN rank-K maxout units,
andM linear output units used for multi-class classification. Under the assumptions of Theorem 3.9, there
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exists δ0 ≤ 1/(2CgradCbias) such that for all cubesC ⊆ Rn0 with side length δ > δ0,

E
[ # linear pieces in the
decision boundary ofN inC

]
vol(C)

≤


(
M
2

)
KN , N ≤ n0

(24CgradCbias)
n0 (2KN)n0−1

(n0−1)!

(
M
2

)(K(n0−1)
2(n0−1)

)
, N ≥ n0

.

Here the expectation is taken with respect to the distribution of weights and biases inN .

For binary classification,M = 2, this bound has asymptotic order O((K3N)n0−1) inK and
N . For the expected volume, we have the following.

Theorem 3.12 (Upper bound on the volume of the (n0 − r)-skeleton of the decision boundary).
Consider a bounded measurable set S ⊂ Rn0 . Consider the notation and assumptions of Theorem 3.9,
whereby the constantsCgrad andCbias are over S. Then, for any r ∈ {1, . . . , n0}we have

E[voln0−r(XDB,r ∩ S)]
voln0(S)

≤ (2CgradCbias)
r

min{M−1,r}∑
i=1

(
M

i+ 1

)(
K(r − i)

2(r − i)

)(
N

r − i

)
.

Moreover, the expected distance to the decision boundary can be bounded as follows.

Corollary 3.13 (Distance to the decision boundary). SupposeN is as in Theorem 3.9. For any compact
set S ⊂ Rn0 let x be a uniform point in S. There exists c > 0 independent of S so that

E[distance(x,XDB)] ≥
c

2CgradCbiasMm+1m
,

wherem := min{M − 1, n0}.

The proofs are presented in Section 3.H, where we also extend Theorem 3.11 to address the ex-
pected number of co-dimension-r pieces of the decision boundary. A corresponding result applies
for the case of ReLU networks (see details in Section 3.H).

3.6 Experiments

In the experiments we used fully-connected networks. We describe the network architec-
ture in terms of the depth and total number of units, with units evenly distributed across the
layers with larger lower layers if needed. For instance, a network of depth 3 with 110 units
has 3 hidden layers of widths 37, 37, 36. Details and additional experiments are presented
in Section 3.K. The computer implementation of the key functions is available on GitHub at
https://github.com/hanna-tseran/maxout_complexity.

Initialization procedures We consider several initialization procedures detailed in Section 3.J: 1)
ReLU-He initializes the parameters as iid samples from the distribution proposed by He et al. (2015)
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Table 3.1: Standard deviation of the weight distribution for maxout-He initialization.

MAXOUT RANK STANDARDDEVIATION

2
√
1/nl

3
√
2π/((

√
3 + 2π)nl)

4
√
π/((

√
3 + π)nl)

5
√

0.5555/nl

ReLU
√
2/nl

for ReLUs. 2) Maxout-He follows a similar reasoning to normalize the expected norm of activation
vectors across layers but for the case ofmaxout networks. Theweight distribution has standard de-
viationdependingonK andtheassumedtypeofdatadistribution, as shown inTable3.1. 3) “Sphere”
ensures each unit has the maximum number of regions. 4) “Many regions” ensures each layer has
themaximum number of regions.

Algorithm for counting activation regions Several approaches for counting linear regions of
ReLU networks have been considered (e.g., Serra et al., 2018; Hanin and Rolnick, 2019b; Serra and
Ramalingam, 2020; Xiong et al., 2020). For maxout networks, we count the activation regions and
pieces of the decision boundary by iterative addition of linear inequality constraints and feasibility
verification using linear programming. Pseudocode and complexity analysis are provided in Sec-
tion 3.I.

Number of regions and decision boundary for different networks Figure 3.2 shows a close
agreement, up to constants, of the theoretical upper bounds on the expected number of activation
regions and on the expected number of linear pieces of the decision boundarieswith the empirically
obtained values for different networks. Further comparisons with constants and different values
of K are provided in Section 3.K. Figure 3.3 shows that for common parameter distributions, the
growth of the expected number of activation regions is more significantly determined by the total
number of neurons than by the network’s depth. In fact, we observe that for high rankunits and cer-
tain types of distributions, deeper networksmay have fewer activation regions. We attribute this to
the fact that higher rank units tend to have smaller images (since they compute the max of more
pre-activation features). Figure 3.4 shows how n0 andK affect the number of activation regions.
For small input dimension, the number of regions per unit tends to be smaller thanK . Indeed, for
iid Gaussian parameters the number of regions per unit scales as logK (see Section 3.C).

Number of regions during training We consider the 10-class classification task with theMNIST
dataset (LeCunandCortes, 2010)andoptimizationwithAdam(KingmaandBa, 2015)usingdifferent
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initialization strategies. Notice that for deep skinny fully connected networks the task is non-trivial.
Figure 3.5 shows how the number of activation regions evolves during training. Shown are also the
linear regions and decision boundaries over a 2D slice of the input space through 3 training data
points. Figure 3.6 shows the training loss and accuracy curves for the different initializations. We
observe thatmaxoutnetworkswithmaxout-He, sphere, andmany regions converge faster thanwith
naive He initialization.

Number of activation regions Number of pieces in the decision boundary

Figure 3.2: Shown are means and stds for 30 maxout-He normal initializations for networks with
K = 2 and n0 = 2. Left: Comparison of the theoretically predicted growth O(Nn0/n0!) and
the experimentally obtained number of regions for networks with different architectures. Right:
Comparison of the theoretically predicted growthO(N) and the experimentally obtained number
of linear pieces of the decision boundary for networks with different architectures.

3.7 Discussion

Weadvance a line of analysis recently proposed byHanin andRolnick (2019a,b), where the focus lies
on the expected complexity of the functions represented by neural networks rather thanworst case
bounds. Whereas previous works focus on single-argument activations, our results apply to net-
works with multi-argument maxout units. We observe that maxout networks can assume widely
different numbers of linear regions with positive probability and then computed an upper bound
on the expected number of regions and volume given properties of the parameter distribution, cov-
ering the case of zero biases. Further, taking the standpoint of classification, we obtained corre-
sponding results for the decision boundary of maxout (and ReLU) networks, along with bounds on
the expected distance to the decision boundary.

Experiments show that the theoretical bounds capture the general behavior. We present al-
gorithms for enumerating the regions of maxout networks and proposed parameter initialization
strategies with two types ofmotivations, one to increase the number of regions, and second, to nor-
malize the variance of the activations similar to Glorot and Bengio (2010) and He et al. (2015), but
now for maxout. We observed experimentally that this can improve training inmaxout networks.
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Maxout rankK = 2

Maxout rankK = 5

Figure 3.3: Effect of the depth and number of neurons on the number of activation regions at initial-
ization for networks with n0 = 2. Shown are means and stds for 30 maxout-He normal initializa-
tions.

Contribution per unit in a shallow network Effect of the maxout rank

Figure 3.4: Left: Plotted is #regions1/N for a shallow network withN = 5. The multiplicative con-
tribution per unit increases with the input dimension until the trivial upper boundK is reached.
Right: Number of regions of 3 layer networks with n0 = 2 depending onK . Shown are means and
stds for 30 ReLU-He normal initializations.

Limitations In our theory and experiments, we have considered only fully connected networks.
The analysis and implementation of other architectures for experimentswithmore diverse datasets
are interesting extensions. By design, the results focus on parameter distributions that have a den-
sity.
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Number of regions during training Before training After 100 epochs
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Figure 3.5: Evolution of the linear regions and the decision boundary during training on theMNIST
dataset in a slice determined by three random points from different classes. The network had 100
maxout units of rankK = 2, and was initialized using maxout-He normal initialization. The right
panel is for the 3 layer network. As expected, for the shallow rank-2 network, the number of regions
is approximately constant. For deep networks, we observe a moderate increase in the number of
regions as training progresses, especially around the training data. However, the number of regions
remains far from the theoretical maximum. This is consistent with previous observations for ReLU
networks. There is also a slight increase in the number of linear pieces in the decision boundary, and
at the end of training the decision boundary clearly separates the three reference points.

Futurework In futurework,wewould like to obtain a fine-graineddescription of the distribution
of activation regions over the input space depending on the parameter distribution and explore the
relations to the speed of convergence and implicit biases in gradient descent. Of significant interest
wouldbeanextensionof thepresented results to specific types of parameterdistributions, including
such which do not have a density or those onemight obtain after training.
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Loss on the training set Accuracy on the validation set

Figure 3.6: Comparison of training on MNIST with different initializations. All networks had 200
units, 10 layers, and maxout networks had rankK = 5. Shown are averages and std (barely no-
ticeable) over 30 repetitions. The type of initialization has a significant impact on the training time
of maxout networks, with maxout-He, sphere, and many regions giving better results for deep net-
works and larger maxout rank (more details on this in Section 3.K).
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Proofs and experiment details

Proofs and experiment details are organized as follows.

• 3.A Proofs related to activation patterns and activation regions.

• 3.B Proofs related to the numbers of regions attained with positive probability.

• 3.C Expected number of regions for large rank.

• 3.D Proofs related to the expected volume of activation regions.

• 3.E Proofs related to the expected number of activation regions.

• 3.F Upper bounding the constants.

• 3.G Proofs related to the expected number of regions for networks with zero bias.

• 3.H Proofs related to the decision boundary.

• 3.I Algorithm for counting regions and pieces of the decision boundary.

• 3.J Initialization procedures.

• 3.K Details on the experiments and additional experiments.

3.A Proofs related to activation patterns and activation regions

3.A.1 Number of activation patterns

Lemma 3.6 (Simple upper bound on the number of r-partial activation patterns). Let r ∈ N0. The
number of r-partial activation patterns and sub-patterns in a network with a total ofN rank-K maxout
units are upper bounded by |Pr| ≤

(
rK
2r

)(
N
r

)
KN−r and |Sr| ≤

(
rK
2r

)(
N
r

)
respectively.

Proof of Lemma 3.6. To get an r-partial activation pattern one needs atmost r neurons. The number
of ways to choose them is

(
N
r

)
. The number of ways to choose a pre-activation feature that attains

a maximum in the rest of neurons isKN−r . The r chosen neurons have in total rK pre-activation
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features. Out of them, we need to choose r features that attainmaximum, and r additional features
to construct the pre-activation pattern, so 2r features in total. We ignore the restriction that there
needs to be at least one feature fromeach neuron,which gives us an upper-bound r

(
K
2r

)
. Notice that

this way we also count r-partial patterns that require less than r neurons. Combining everything,
we get the desired result. For the sub-patters, we simply ignore the termKn−r .

We will use the above upper bound in our calculations due to its simplicity. For completeness,
we note that the exact number of partial activation patterns can be given as follows.

Proposition 3.14 (Number of r-partial activation patterns). For a network with a total ofN rank-K
maxout units the number of distinct r-partial activation patterns is

|Pr| =
∑

(N0,...,NK−1)∈NK
0 :∑K−1

j=0 Nj=N,
∑K−1

j=0 jNj=r

(
N

N0, . . . , NK−1

)K−1∏
j=0

(
K

1 + j

)Nj

.

IfK = 2 then the summation index takes only one value (N0, N1) = (N − r, r) and the expression
simplifies to

(
N

N−r

)
2N−r .

Proof. We have N neurons. For a given activation pattern, for j = 0, . . . ,K − 1, denote Nj the
number of neuronswith (1+j)pre-activation features attaining themaximum. Since every neuron
has indecision in the range0, . . . ,K−1, wehave

∑K−1
j=0 Nj = N . The r-partial activationpatterns

are precisely those for which
∑

j jNj = r. The number of distinct ways in which we can partition
the set ofN neurons intoK sets of cardinalitiesN0, . . . , NK−1 is precisely

(
N

N0,...,NK−1

)
. For each

j, the number of ways in which a given neuron can have (1 + j) pre-activation features attaining
themaximum is

(
K
1+j

)
.

3.A.2 Generic correspondence between activation regions and linear regions

For a fixed activation pattern J , a computation path γ is a path in the computation graph of the
networkN that goes from input to the output through one of the units in each layer, where γ =

(γ0, γ1, . . . , γL), γl ∈ [nl]× [K] specifies a unit and a corresponding pre-activation feature in layer
l. For any input x in the activation regionR(J, θ), the gradient with respect to x can be expressed
through the computation paths as

∇N (x, θ) =W (L+1)
x W (L)

x · · ·W (1)
x ,

∂

∂xi
N (x, θ) =

∑
paths γ

starting at i

L+1∏
l=1

w(l)
γ ,

where inW (l)
x ∈ Rnl×nl−1 is a piecewise constant matrix valued function of the input xwith rows

corresponding to the pre-activation features that attain the maximum according to the pattern J ,
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and w(l)
γ ∈ R are corresponding weights on the edge of γ between the layer (l − 1) and l, again

depending on J . For a simple example of when one linear region is a union of several activation
regions in amaxout network, consider a networkwith one of theweights in the single linear output
unit set to zero. Such a situation can happen, for instance, at initialization, thoughwith probability
0. Then, switching between the maximums in the unit in the previous layer to which this weight
connects will not be visible when we compute the gradient, and several activation regions created
by the transitions betweenmaximums in this unit will become a part of the same linear region.

Lemma 3.5 (Activation regions vs linear regions). Consider amaxout networkN . The set of parameter
values θ for which the represented function has the same gradient on two distinct activation regions is a null
set. In particular, for almost every θ, linear regions and activation regions correspond to each other.

Proof of the Lemma 3.5. Consider two different non-empty activation regions corresponding to acti-
vation patterns J1 and J2 for which∇N (x; θ) has the same value. Thismeans thatn0 equations of
the form

∑
paths γ∈Γ1,i

L+1∏
l=1

w(l)
γ =

∑
paths γ∈Γ2,i

L+1∏
l=1

w(l)
γ

are satisfied, where Γ1,i,Γ2,i are collections of paths starting at i corresponding to the activation
patterns J1 and J2 respectively. For different values of i the sets of paths differ only at the input
layer.

Based on this equation, there exists cγ,i ∈ {±1} and a non-empty collection of paths Γi (the
symmetric difference of Γ1,i and Γ2,i) so that

∑
paths γ∈Γi

cγ,i

L+1∏
l=1

w(l)
γ = 0.

This is a polynomial equation in the weights of the network. Each monomial occurs either with
coefficient1or−1. In particular, this polynomial is not identically zero. The zero set of a polynomial
is of measure zero on R#weights unless it is identically zero, see e.g. Caron and Traynor (2005). We
have a system of n0 such equations (one for each i). The intersection of the solution sets is again
a set of measure zero. The total number of pairs of activation regions is finite, upper bounded by(
KN

2

)
. A countable union of measure zero sets is of measure zero, thus the set of weights for which

two activation regions have the same gradient values hasmeasure zerowith respect to the Lebesgue
measure onR#weights.

3.A.3 Partial activation regions

Nowwe introduce several objects that are needed to discuss r-partial activation regions.
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Definition 3.15. Fix a value θ of the trainable parameters. For a neuron z inN and a set Jz ⊆ [K],
the Jz-activation region of a unit z is

H(Jz; θ) := {x0 ∈ Rn0 | argmax
k∈[K]

ζz,k(xl(z)−1; θ) = Jz}.

More generally, for a set of neurons Z = {z} and a corresponding list of sets JZ = (Jz)z∈Z , the
corresponding JZ-activation region is

H(JZ ; θ) :=
⋂
z∈Z

H(Jz; θ). (3.1)

If we specify an activation pattern for every neuron, J[N ], so thatZ = [N ], then wewrite

R(J[N ]; θ) = H(J[N ]; θ).

Recall that an activation pattern J[N ] withwith the property that
∑

z(|Jz| − 1) = r is called an
r-partial activation pattern. To distinguish such patterns, we denote them by Jr ∈ Pr. The union
of all corresponding activation regions is denoted

XN ,r(θ) =
⋃

Jr∈Pr

R(Jr; θ).

Lemma 3.4 (r-partial activation regions are relatively open convex polyhedra). Consider a maxout
network N . Let r ∈ {0, . . . , n0} and J ∈ Pr . Then for any θ, R(J, θ) is a relatively open convex
polyhedron inRn0 . For almost every θ, it is either empty or has co-dimension r.

Proof of Lemma 3.4. Fix an r-partial activation patternJr ∈ Pr. Over the activation regionR(J ; θ),
the k-th pre-activation feature of each neuron z is a linear function of the input to the network,
namely

w∗
z,k · x+ b∗z,k = w

(l(z))
z,k (w(l(z)−1) · · · (w(1) · x+ b(1)) · · ·+ b(l(z)−1)) + b

(l(z))
z,k ,

wherew∗
z,k and b

∗
z,k, k ∈ [K] denote the weights and biases of this linear function, which depend

on the weights and biases and activation values of the units up to unit z. For each z specify a fixed
element j0 ∈ Jz . The activation region can be written as⋂

z∈[N ]

{
x ∈ Rn0 |w∗

z,j0 · x+ b∗z,j0 = w∗
z,j · x+ b∗z,j , ∀j ∈ Jz \ {j0};

w∗
z,j0 · x+ b∗z,j0 > w∗

z,i · x+ b∗z,i, ∀i ∈ [K] \ Jz
}
.

Thismeans that an r-partial activation region is determined by a set of strict linear inequalities and
r linear equations. The equations are represented by vectors vz,j = (w∗

z,j0
, b∗zj0

) − (w∗
z,j , b

∗
z,j) for

56



Chapter 3. On the expected complexity of maxout networks

all j ∈ Jz \ {j0} for all z for which |Jz| > 1. For generic parameters these equations are linearly
independent. Indeed, thevectorsbeing linearlydependentmeans that there is amatrixV ⊤V ,where
V has rows vz,j , with vanishing determinant. By similar arguments as in the proof of Lemma 3.5,
the set of parameters solving a polynomial system has measure zero. Hence, for generic choices of
parameters, the r linear equations are independent and the polyhedron will have a co-dimension r
(or otherwise be empty).

The same result can be obtained for r-partial activation regions of ReLU networks since ReLU
activation regions can be similarly written as a system of linear equations and inequalities.

We can make a statement about the shape of r-partial activation regions of maxout networks.
Recall that a convex polyhedron is the closure of the solution set to finite system of linear inequalities.
If it is bounded, it is called a convex polytope. The dimension of a polyhedron is the dimension of
the smallest affine space containing it.

The next statement follows immediately from Lemma 3.4.

Lemma 3.16 (XN ,r consists of (n0 − r)-dimensional pieces). With probability 1 with respect to the
distribution of the network parameters θ, for any x ∈ XN ,r there exists ε > 0 (depending on x and θ) s.t.
XN ,r intersected with the ε ballBε(x) is equal to the intersection of this ball with an (n0−r)-dimensional
affine subspace ofRn0 .

Corollary 3.17 (r-partial activation regions are relatively open convex polyhedra). Recall that an an
r-partial activation sub-pattern Ĵ ∈ Sr is a list Ĵ = (Jz)z∈Z of sets Jz ⊆ [K], z ∈ Z ⊆ [N ] with
|Jz| > 1 and

∑
z∈Z(|Jz| − 1) = r. For almost all choices of the parameter (i.e., except for a null set with

respect to the Lebesgue measure),

voln0−r (XN ,r(θ)) =
∑
Ĵ∈Sr

voln0−r(H(Ĵ ; θ)).

Proof of Corollary 3.17. Given Ĵ ∈ Sr, we denote Z ⊆ [N ] the corresponding list of neurons. Using
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the notion of indecision loci fromDefinition 3.15, we can re-writeXN ,r(θ) as

XN ,r(θ) =
⋃

J∈Pr

R(J ; θ) =
⋃

J∈Pr

H(J ; θ) =
⋃

J∈Pr

⋂
z∈[N ]

H(Jz; θ)

=
⋃

J∈Pr

⋂
z∈Z

H(Jz; θ) ∩
⋂

z∈[N ]\Z

H(Jz; θ)


=
⋃

Ĵ∈Sr

⋂
z∈Z

H(Jz; θ) ∩
⋃

Jz∈[K],z∈[N ]\Z

⋂
z∈[N ]\Z

H(Jz; θ)


=
⋃

Ĵ∈Sr

⋂
z∈Z

H(Jz; θ) ∩
⋂
z /∈Z

⋃
k∈[K]

H(Jz = {k}; θ)

 .
Therefore,

voln0−r (XN ,r(θ)) =
∑
Ĵ∈Sr

voln0−r

⋂
z∈Z

H(Jz; θ) ∩
⋂
z /∈Z

⋃
k∈[K]

H(Jz = {k}; θ)

 .

Notice that
(⋂

z /∈Z
⋃

k∈[K]H(Jz = {k}; θ)
)c

is a zero measure set in XN ,r(θ), because over
that set, by Lemma 3.16 the co-dimension of the corresponding activation regions is larger than r.
Therefore, for any given Ĵ = (Jz)z∈Z ∈ Sr ,

voln0−r

⋂
z∈Z

H(Jz; θ) ∩
⋂
z /∈Z

⋃
k∈[K]

H(Jz = {k}; θ)

 = voln0−r

(⋂
z∈Z

H(Jz; θ)

)
.

This completes the proof.

3.B Proofs related to the generic numbers of regions

3.B.1 Number of regions and Newton polytopes

We start with the observation that the linear regions of a maxout unit correspond to the upper ver-
tices of a polytope constructed from its parameters.

Definition 3.18. Consider a function of the form f : Rn → R; f(x) = max{wj · x + bj},
where wj ∈ Rn and bj ∈ R, j = 1, . . . ,M . The lifted Newton polytope of f is defined as Pf :=

conv{(wj , bj) ∈ Rn+1 : j = 1, . . . ,M}.

Definition 3.19. LetP be a polytope inRn+1 and letF be a face ofP . An outer normal vector ofF
is a vector v ∈ Rn+1with 〈v, p−q〉 > 0 for all p ∈ F , q ∈ P \F and 〈v, p−q〉 = 0 for all p, q ∈ F .
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(w1,−b1)

(w2,−b2)

(w3,−b3)

P ′
f

NP ′
f

Rn0 × {−1}

Figure 3.7: The linear regions of a function f(x) = maxj{〈wj , x〉 + bj} correspond to the lower
vertices of the polytope P ′

f = convj{(wj ,−bj)} ⊆ Rn0+1, or, equivalently, the upper vertices of
the lifted Newton polytope Pf = convj{(wj , bj)} ⊆ Rn0+1. The linear regions of f can also be
described as the intersection of the normal fanNP ′

f
, consisting of outer normal cones of faces ofP ′

f ,
with the affine spaceRn0 × {−1}.

The face F is an upper face of P if it has an outer normal vector v whose last coordinate is positive,
vn+1 > 0. It is a strict upper face if each of its outer normal vectors has a positive last coordinate.

The Newton polytope is a fundamental object in the study of polynomials. The naming in the
context of piecewise linear functions stems from the fact that piecewise linear functions can be re-
garded as differences of so-called tropical polynomials. The connections between such polynomials
and neural networks with piecewise linear activation functions have been discussed in several re-
cent works (Zhang et al., 2018; Charisopoulos and Maragos, 2018; Alfarra et al., 2020). For details
on tropical geometry, see (Maclagan and Sturmfels, 2015; Joswig, 2022). Although in the context of
(tropical)polynomials the coefficients are integers, sucha restriction isnotneeded inourdiscussion.

A convex analysis interpretation of the Newton polytope can be given as follows. Consider a
piecewise linear convex function f : Rn → R; x 7→ maxj{wj · x+ bj}. Then the upper faces of its
lifted Newton polytope Pf correspond to the graph {(x∗,−f∗(x∗)) : x∗ ∈ Rn ∩ dom(f∗)} of the
negatedconvexconjugatef∗ : Rn → R; x∗ 7→ supx∈Rn〈x, x∗〉−f(x),which is a convexpiecewise
linear function. This implies that the upper vertices ofPf are the points (wj , bj) ∈ Rn+1 for which
f(x) = wj ·x+ bj over a neighborhood of inputs. Hence the upper vertices of theNewton polytope
correspond to the linear regionsoff . This relationshipholdsmoregenerally for boundaries between
linear regions and other lower dimensional linear features of the graph of the function. Wewill use
the following result, which is well known in tropical geometry (see Joswig, 2022).

Proposition 3.20 (Regions correspond to upper faces). The r-partial activation regions of a function
f(x) = maxj{wj · x+ bj} correspond to the r-dimensional upper faces of its lifted Newton polytopePf .
Moreover, the bounded activation regions correspond to the strict upper faces ofPf .

The situation is illustrated in Figure 3.7.
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Rn0

Figure 3.8: A layer of maxout units of rankK ≥ 3 attains several different numbers of linear re-
gionswith positive probability over the parameters. For a layerwith two rank-3maxout units, some
neighborhoods of parameters give 6 linear regions and others 9, with nonlinear loci given by per-
turbations of the red-pink and red-darkred lines.

3.B.2 Bounds on themaximumnumber of linear regions

For reference, we briefly recall results providing upper bounds on the maximum number of linear
regions of maxout networks. Themaximum number of regions of maxout networks was studied by
Pascanu et al. (2014); Montufar et al. (2014), showing that deep networks can represent functions
with many more linear regions than any of the functions that can be represented by a shallow net-
work with the same number of units or parameters. Serra et al. (2018) obtained an upper bound
for deep maxout networks based on multiplying upper bounds for individual layers. These bounds
were recently improved byMontúfar et al. (2022), who obtained the following result, here stated in
a simplified form.

Theorem 3.21 (Maximum number of linear regions, Montúfar et al. 2022).

• For a network with n0 inputs and a single layer of n1 rank-K maxout units, the maximum number
of linear regions is

∑n0
j=0

(
n1

j

)
(K − 1)j .

• For a network with n0 inputs and L layers of n1, . . . , nL rank-K maxout units, if n ≤ n0, nl
n

even, and el = min{n0, . . . , nl−1}, the maximum number of linear regions is lower bounded by∏L
l=1(

nl
n (K − 1) + 1)n and upper bounded by

∏L
l=1

∑el
j=0

(
nl
j

)
(K − 1)j .

3.B.3 Numbers of regions attained over positivemeasure subsets of parameters

A layer ofmaxout units can attain several different numbers of linear regionswith positive probabil-
ity over the parameters. This is illustrated in Figure 3.8. We obtain the following result, describing
numbers of linear regions that can be attained by maxout units, layers, and deep maxout networks
with positive probability over the parameters.

Theorem 3.7 (Numbers of linear regions).

• Consider a rank-K maxout unit with n0 inputs. This corresponds to a network with an input layer
of size n0 and single maxout layer with a single maxout unit. For each 1 ≤ k ≤ K , there is a set of
parameter values for which the number of linear regions is k. Formin{K,n0 + 1} ≤ k ≤ K , the
corresponding set has positive measure, and else it is a null set.
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• Consider a layer of n1 rank-K maxout units with n0 inputs. This corresponds to a network with
a single maxout layer, L = 1, and nL = n1. For each choice of 1 ≤ k1, . . . , kn1 ≤ K ,
there are parameters for which the number of linear regions is

∑n0
j=0

∑
S∈([n1]

j
)
∏

i∈S(ki− 1). For

min{K,n0+1} ≤ k1, . . . , kn1 ≤ K , the corresponding set has positivemeasure. HereS ∈
(
[n1]
j

)
means that S is a subset of [n1] := {1, . . . , n1} of cardinality |S| = j.

• Consider a network with n0 inputs and L layers of n1, . . . , nL rank-K maxout units,K ≥ 2, nl
n0

even. Then, for each choice of 1 ≤ kli ≤ K , i = 1, . . . , n0, l = 1, . . . , L, there are parameters
for which the number of linear regions is

∏L
l=1

∏n0
i=1(

nl
n0
(kli− 1)+ 1). There is a positive measure

subset of parameters for which the latter is the number of linear regions over (0, 1)n0 .

The strategy of the proof is as follows. We first show that there are parameters such that indi-
vidual rank-K maxout units behave as rank-k maxout units, for any 1 ≤ k ≤ K , and there are
positive measure subsets of the parameters for which they behave as rank-k maxout units, for any
n+1 ≤ k ≤ K . Further, there are positivemeasure subsets of the parameters of individual rank-K
maxout units for which, over the positive orthantRn

≥0, they behave as rank-kmaxout units, for any
1 ≤ k ≤ K . Then we use a similar strategy as Montúfar et al. (2022) to construct parameters of a
network with units of pre-specified ranks which attain a particular number of linear regions.

Proposition 3.22. Consider a rank-K maxout unit withn inputs restricted toRn
≥0. For any 1 ≤ k ≤ K ,

there is a positive measure subset of parameters for which the behaves as a rank-k maxout unit. Moreover,
this set can be made to contain parameters representing any desired function that can be computed by a
rank-k maxout unit.

Proof. Weneed to show that for any choices of (wi, bi), i ∈ [k], there are generic choices of (wj , bj),
j ∈ [K] \ [k], so that for each J ⊆ [K]with J 6⊆ [k], the corresponding activation regionR(J, θ)

does not intersectRn
≥0. Notice that, if j ∈ J \ [k], then the corresponding activation regionR(J, θ)

is contained in the arrangement consisting of hyperplanesHji = {x : (wj−wi)·x+(bj−bi) = 0},
i ∈ J \ {j}. For each j ∈ [K] \ [k], we choosewj = jc(−1, . . . ,−1)+ ϵj , bj = −jc′+ ϵ′j for some
c > 2max{‖wi‖∞ : i ∈ [k]}, c′ > 2max{bi : i ∈ [k]} and small ϵj ∈ Rn, ϵ′j ∈ R. Then, for each
j ∈ [K] \ [k] and i ∈ [K], j < j, the hyperplaneHji has a normal vector (wj −wi) ∈ R<0 and an
intercept bj − bi < 0, and hence it does not intersectRn

≥0.

We are now ready to prove the theorem.

Proof of Theorem 3.7. Single unit. Consider amaxout unitmaxj∈[K]{wj ·x+bj}. To have this behave
as a rank-k maxout unit, 1 ≤ k ≤ K , we simply set (wj , bj) = (w1, b1 − 1), j ∈ [K] \ [k]. This
is a non-generic choice of parameters. Consider now a rank-k maxout unit with n + 1 ≤ k and
generic parameters (wi, bi), i ∈ [k]. We want to show that there are generic choices of (wj , bj),
j ∈ [K] \ [k] so that maxj∈[K]{wj · x + bj} = maxi∈[k]{wi · x + bi} for all x ∈ Rn. In view of
Proposition 3.20, this is equivalent to (wj , bj), j ∈ [K] \ [k] not being upper vertices of the lifted
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Newton polytope P = conv{(wj , bj) : j ∈ [K]}. Since any generic n + 1 points inRn are affinely
independent, we have that the convex hull conv{wi ∈ Rn : i ∈ [k]} has full dimension n. Hence,
anywj =

1
k

∑
i∈[k]wi+ ϵj and bj = mini∈[k]{bi}− 1+ ϵ′j with sufficiently small ϵj ∈ Rn, ϵ′j ∈ R,

j ∈ [K] \ [k] are strictly below conv{(wi, bi) : i ∈ [k]} and are not upper vertices ofP .
Single layer. We use the previous item to obtain n1 maxout units of ranks k1, . . . , kn1 , either in

thenon-generic or in thegeneric cases. Thenweapply the constructionofparameters and the region
counting argument from Montúfar et al. (2022, Proposition 3.4) to this layer, to obtain a function
with

∑n0
j=0

∑
S⊆([n1]

j
)
∏

i∈S(ki − 1) linear regions. For each of the units i = 1, . . . , n1, one may
choose a generic vector vi ∈ Rn and define the weights and biases of the pre-activation features as
wij =

j
ki
vi and bij = −g( j

ki
+ ϵi), j = 1, . . . , ki, where g : R → R is any strictly convex function

and ϵi is chosen generically. Then the non-linear locus of each unit consists of ki − 1 parallel hy-
perplanes with a generic shift ϵi, and the normal vectors vi of different units are in general position.
Thenumber of regionsdefinedby suchanarrangement of hyperplanes inRn canbe computedusing
Zaslavsky’s theorem, giving the indicated result. It remains to show that, forn0 +1 ≤ k1, . . . , kn1 ,
there are positivemeasure perturbations of these parameters that do change the number of regions.
By the lower semi-continuity discussed in Section 3.3, the number of regions does not decrease for
sufficiently small generic perturbations of the parameters. To show that it does not increase, we
note that, by Theorem 3.21 this number of regions is themaximum that can be attained by a layer of
n1 maxout units of ranks k1, . . . , kn.

Deep network. For the first statement, we use the first item to obtainmaxout units of any desired
ranks1 ≤ kli ≤ K , l = 1, . . . , L, i = 1, . . . , nl, and thenapply the constructionofparameters from
Montúfar et al. (2022, Proposition 3.11) to this network, to obtain the indicated number of regions.

For the second statement, we use Proposition 3.22 to have the units behave as maxout units of
any desired ranks over [0, 1]n0 . For the l-th layer, we divide the nl units into n0 blocks x(l)ij , i =

1, . . . , n0, j = 1, . . . , nl
n0
. For i = 1, . . . , n0, the i-th block consists of nl

n0
maxout units of rank

kli. We can choose the weights and biases so that over [0, 1]n0 , the nonlinear locus of the i-th block
(x

(1)
i,1 , . . . , x

(1)

i,
n1
n0

) consists of nl
n0
(kli − 1) parallel hyperplanes with normal ei, and the alternating

sum
∑nl/n0

j=1 (−1)jx
(l)
ij is a zig-zag function along the direction eiwhichmaps (0, 1)n0 to (0, 1), and

maps anypoint inRn0 \ [0, 1]n0 to a point inR\ [0, 1]. In thisway, the l-th layer, followedby a linear
layerRnl → Rn0 ,maps (0, 1)n0 onto (0, 1)n0 in a

∏n0
i=1(

nl
n0
(kli−1)+1) to onemanner. Sufficiently

small perturbationsof theparametersdonot affect this general behavior. The compositionofL such
layers gives the desired number of regions over (0, 1)n0 .

3.B.4 Minimumnumber of activation regions

One can easily construct parameters so that the represented function is identically zero. However,
these are very special parameters. Moreover, it can be shown that the number of linear regions of
a maxout network is a lower semi-continuous function of the parameters, in the sense that suffi-
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ciently small generic perturbations of the parameters do not decrease the number of linear regions
(Montúfar et al., 2022, Proposition 3.2). Hence, the question arises: What is the smallest number of
linear regions that will occur with positive probability over the parameter space (i.e. for all param-
eters except for a null set). For example, in the case of shallow ReLU networks, it is known that the
number of regions for generic parameters is equal to themaximum. Formaxout networkswe saw in
Theorem 3.7 that several numbers of linear regions can happen with positive probability. We prove
the following lower bound on the number of regions formaxout networkswith generic parameters.

Theorem 3.8 (Generic lower bound on the number of linear regions). Consider a rank-K maxout
network,K ≥ 2, with n0 inputs, n1 units in the first layer, and any number of additional nonzero width
layers. Then, for almost every choice of the parameters, the number of linear regions is at least

∑n0
j=0

(
n1

j

)
and the number of bounded linear regions is at least

(
n1−1
n0

)
.

First we observe that for generic parameters, the number of linear regions of the function rep-
resented by a network is bounded below by the number of linear regions of the network restricted
to the first layer. This is not trivial, since the deeper layers could in principle map the values from
the first layer to a constant value, resulting in a function with a single linear region. However, for
maxout networks this only happens for a null set of parameters.

Proposition 3.23. The number of activation regions of a maxout network is at least as large as the number
of regions of the first layer. Moreover, for generic parameters the number of linear regions is equal to the
number of activation regions.

Proof. The number of regions never reduces as we pass through the network. The region is either
kept as it is or split into parts by a neuron. The fact that for generic parameters activation regions
correspond to linear regions is Lemma 3.5.

In order to lower bound the number of regions of a single layer, we use the correspondence be-
tween linear regions and the upper vertices of the corresponding lifted Newton polytope, Proposi-
tion 3.20. We first observe that the Newton polytope of a shallow maxout units is the Minkowski
sum of the Newton polytopes of the individual units. Recall that the Minkowski sum of two setsA
andB is the setA+B = {a+ b : a ∈ A, b ∈ B}.

Proposition 3.24. Consider a layer of maxout units, f : Rn → Rm; fi(x) = max{wir · x+ bir : r =

1, . . . , k}. Let f(x) =
∑m

i=1 fi(x). Then the lifted Newton polytope of f is the Minkowski sum of the
lifted Newton polytopes of f1, . . . , fm,Pf =

∑m
i=1 Pfi .

Proof. This follows from direct calculation. Details can be found in the works of Zhang et al. (2018)
andMontúfar et al. (2022).

Next, a family of polytopes Pi = conv{(wi,r, bi,r) ∈ Rn0+1 : r = 1, . . . ,K} with generic
(wi,r, bi,r), r = 1, . . . ,K , i = 1, . . . , n1, is in general orientation. For such a family, theMinkowski
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sum P = P1 + · · · + Pn1 has at least as many vertices as a Minkowski sum of n1 line segments in
general orientation:

Proposition 3.25 (Adiprasito 2017, Corollary 8.2). The number of vertices of a Minkowski sum of m
polytopes in general orientation is lower bounded by the number of vertices of a sum ofm line segments in
general orientations.

From this, we derive a lower bound on the number of upper vertices of a Minkowski sum of
polytopes in general orientations.

Proposition 3.26. The number of upper vertices of aMinkowski sum ofn1 polytopes inRn0+1 in general
orientation is at least

∑n0
j=0

(
n1

j

)
, and the number of strict upper vertices is at least

(
n1−1
n0

)
.

Proof. Consider the sum P = P1 + · · · + Pn1 of polytopes Pi = {(wi,r, bi,r) : r = 1, . . . , k},
i = 1, . . . , n1. The set of upper vertices consists of 1) strict upper vertices and 2) vertices which
are both upper and lower. The number of strict upper vertices of a Minkowski sum of n1 positive
dimensional polytopes in general orientations in Rn0+1 is at least

(
n1−1
n0

)
(Montúfar et al., 2022,

Corollary 3.8).
Nownote that the verticeswhich areupper and lower areprecisely the vertices of theMinkowski

sumQ = Q1 + · · ·+Qn1 of the poltyopesQi = conv{wi,r ∈ Rn0 : r = 1, . . . , k}, i = 1, . . . , n1.
By Proposition 3.25 the total number of vertices of a Minkowski sum is at least equal to the number
of vertices of a Minkowski sum of line segments. The latter is the same as the number of regions of
a central hyperplane arrangement in n0 dimensions, which is

(
n1−1
n0−1

)
+
∑n0−1

j=0

(
n1

j

)
.

Hence for any generic Minkowski sum of n1 positive-dimensional polytopes in n0 + 1 dimen-
sions, the number of upper vertices is at least

(
n1 − 1

n0

)
+

(
n1 − 1

n0 − 1

)
+

n0−1∑
j=0

(
n1
j

)
=

(
n1
n0

)
+

n0−1∑
j=0

(
n1
j

)
=

n0∑
j=0

(
n1
j

)
.

This concludes the proof.

Nowwe have all tools we need to prove the theorem.

Proof of Theorem 3.8. By Proposition 3.23, the number of regions is lower bounded by the number of
regions of the first layer. We now derive a lower bound for the number of regions of a single layer
with n0 inputs and n1 maxout units. In view of Propositions 3.20 and 3.24, we need to lower bound
the number of upper vertices of a generic Minkowksi sum. The bounded regions correspond to the
strict upper vertices. The result follows from Proposition 3.26.

Remark 3.27. The statement of Theorem 3.8 does not apply to ReLU networks unless they have
a single layer of ReLUs. Indeed, for a network with 2 layers of ReLUs there exists a positive mea-
sure subset of parameters for which the represented functions have only 1 linear region. To see this,
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consider a ReLU network with pre-activation features of the units in the second layer always be-
ing non-positive. A subset of parameters required to achieve this is defined as a solution to a set of
inequalities (for instance, when the input weights and biases of the second layer are non-positive)
and has a positive measure. For such pre-activation features, the ReLUs in the second layer always
output 0 and there is a single linear region for the network.

3.C Expected number of activation regions of a single maxout unit

We discuss a single maxout unit with n inputs. In this case, the r-partial activation patterns
correspond to the r-dimensional upper faces of a polytope given as the convex hull of the points
(wk, bk) ∈ Rn+1, k = 1, . . . ,K . The statistics of faces of random polytopes have been studied
in the literature (Hug et al., 2004; Hug and Reitzner, 2005; Bárány and Vu, 2007). We will use the
following result.

Theorem 3.28 (Hug et al. 2004, Theorem 1.1). If v1, . . . , vK are sampled iid according to the standard
normal distribution in Rd, then, the number of s-faces of the convex hull PK = conv{v1, . . . , vK}, de-
noted fs(PK), has expected value

Efs(PK) ∼ c̄(s, d)(logK)
d−1
2 , (3.2)

and the union s-faces ofPK , denoted skels(PK), has expected volume

E vols(skels(PK)) ∼ c(s, d)(logK)
d−1
2 , (3.3)

where c̄(s, d) and c(s, d) are constants depending only on s and d.

Based on this, we obtain the following upper bound for the expected number of linear regions
of a maxout unit with iid Gaussian weights and biases.

Proposition 3.29 (Expected number of regions of a large-rank Gaussian maxout unit). Consider a
rank-K maxout unit with n0 inputs. If the weights and biases are sampled iid from a standard normal
distribution, then for largeK the expected number of non-empty r-partial activation regions satisfies

E[# r-partial activation regions] ≤ c̄(r, n0)(logK)
n0
2 .

where c̄(r, n0) is a constants depending solely on r and n0.

Proof of Proposition 3.29. We use the correspondence between r-partial activation regions and the
upper r-dimensional faces of the lifted Newton polytope (Proposition 3.20). The total number of
s-dimensional faces of a polytope is an upper bound on the number of upper s-dimensional faces.
Nowwe just apply Theorem 3.28.
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We can use the above result to upper bound the expectation value of the number of regions of a
maxout network with iid Gaussian weights and biases. In particular, for a shallowmaxout network
we have the following.

Proposition 3.30 (Expected number of linear regions of a large-rank Gaussianmaxout layer). Con-
sider networkN with n0 inputs and a single layer of n1 rank-K maxout units. Suppose the weights and
biases are sampled iid from a standard normal distribution. Then, for sufficiently large K , the expected
number of linear regions is bounded as

E[# linear regions] ≤
n0∑
j=0

(
n1
j

)
(c̄(n0)(logK)

n0
2 − 1)j ,

where c̄(n0) is a constant depending solely on n0. This upper bound behaves asO(nn0
1 (logK)

1
2
n2
0) in n1

andK .

Proof. By Montúfar et al. (2022, Theorem 3.6), the maximum number of regions of a layer with n0
inputs and n1 maxout units of ranks k1, . . . , kn1 is

max[# linear regions] =
n0∑
j=0

∑
S∈([n1]

j
)

∏
i∈S

(ki − 1).

Consider now our network with n1 maxout units of rank K . For a given probability distribution
over the parameter space, denote Pr(k1, . . . , kn1) the probability of the event that the i-th unit has
ki linear regions, i = 1, . . . , n1. If the parameters of the different units are independent, we have

E[# linear regions] ≤
∑

1≤k1,...,kn1≤K

Pr(k1, . . . , kn1)

n0∑
j=0

∑
S∈([n1]

j
)

∏
i∈S

(ki − 1)

=

n0∑
j=0

∑
S∈([n1]

j
)

∏
i∈S

(E[ki]− 1).

If the weights and biases of each unit are iid normal, Proposition 3.29 allows us to upper bound the
latter expression by

≤
n0∑
j=0

(
n1
j

)
(c̄(n0)(logK)

n0
2 − 1)j .

This concludes the proof.
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3.D Proofs related to the expected volume

The following is a maxout version of a result obtained by Hanin and Rolnick (2019a, Theorem 6) for
the case of networks with single-argument piecewise linear activation functions.

Lemma 3.31 (Upper bound on the expected volume ofXN ,r). Consider a rank-K maxout networkN
with input dimension n0, output dimension 1, and random weights and biases satisfying:

1. The distribution of all weights has a density with respect to the Lebesgue measure.

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the values
of all weights and other biases.

Then, for any bounded measurable set S ⊂ Rn0 and any r ∈ {1, . . . , n0}, the expectation value of
the (n0 − r)-dimensional volume ofXN ,r inside S is upper bounded as

E[voln0−r(XN ,r ∩ S)]

≤
∑
J∈Sr

∫
S

E
[
ρbr((w

m −wr) · xm
−1 + bm) ‖J((wm −wr) · xm

−1 + bm)‖
]
dx,

where, for any given r-partial activation sub-pattern J = (Jz)z∈Z ∈ Sr , for any given Jz we denote its
smallest element by j0, we let ρbr denote the joint conditional density of the biases of pre-activation features
j ∈ Jz \ {j0} of the neurons z ∈ Z , given all other network parameters, we let g : Rn0 → Rr ; x 7→
(wm − wr) · xm

−1 + bm := ((wz,j0 − wz,j) · xl(z)−1 + bz,j0)z∈Z,j∈Jz\{j0} ∈ Rr , denote Jg the

r × n0 Jacobian of g, and ‖Jg(x)‖ = det
(
(Jg(x))(Jg(x))⊤

) 1
2 , and the inner expectation is with

respect to all parameters aside these biases.

Proof of Lemma 3.31. The proof follows the arguments of Hanin and Rolnick (2019a, Theorem6). The
maindifference is thatmaxoutunits aregenerically active and theactivation regionsofmaxoutunits
may involve several pre-activation features and additional inequalities. To obtain the upper bound,
we will discard certain inequalities, and separate one distinguished pre-activation feature j0 for
each neuron participating in a sub-pattern, which allows us to relate inputs in the corresponding
activation regions to bias values and apply the co-area formula.

Recall that an r-partial activation sub-patternJ ∈ Sr is a list of patternsJz ⊆ [K]of cardinality
at least 2 for a collection of participating neurons z ∈ Z , with

∑
z∈Z(|Jz|−1) = r. Further, for any

givenJz wedenote j0 its smallest element. When discussing a particular sub-pattern, wewill write
m = |Z| for the number of participating neurons. Finally, recall thatH(J, θ) =

⋂
z∈Z H(Jz, θ).

By Corollary 3.17, with probability 1with respect to θ,

voln0−r(XN ,r(θ)) =
∑
J∈Sr

voln0−r(H(J, θ)).
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Fix J ∈ Sr. In the following, we prove that

E[voln0−r(H(J, θ) ∩ S)]

≤
∫
S

E
[
ρbr((w

m −wr) · xm
−1 + bm) ‖J((wm −wr) · xm

−1 + bm)‖
]
dx.

We first note that

voln0−r(H(J, θ) ∩ S) =
∫

H(J,θ)∩S

d voln0−r(x). (3.4)

Foreachz ∈ Z andJzwecanpickanelement j0 ∈ Jz andexpressH(Jz, θ) in termsof (|Jz|−1)

equations and (K − |Jz|) inequalities (not necessarily linear),

H(Jz, θ) = {x ∈ Rn0 |wz,j0 · xl(z)−1 + bz,j0 = wz,j · xl(z)−1 + bz,j , ∀j ∈ Jz \ {j0};

wz,j0 · xl(z)−1 + bz,j0 > wz,i · xl(z)−1 + bz,i, ∀i ∈ [K] \ Jz}.
(3.5)

Here, xl(z)−1 are the activation values of the units in the layer preceding unit z, depending on the
input x. Since

∑
z(|Jz| − 1) = r, the setH(J, θ) is defined by r equations (in addition to inequal-

ities). We will denote with br ∈ Rr the vector of biases bz,j that are involved in these r equations,
with subscripts (z, j)with j ∈ Jz \ {j0} and z ∈ Z .

We take the expectation of (3.4) with respect to the conditional distribution of br given the val-
ues of all the other network parameters. We have assumed that this has a density. Denoting the
conditional density of br by ρbr , this is given by∫

Rr

∫
H(J,θ)∩S

d voln0−r(x)ρbr(b
r)dbr. (3.6)

The equations in (3.5) imply that bz,j = (wz,j0 − wz,j) · xl(z)−1 + bz,j0 for any x ∈ H(J, θ). We
write all these equations concisely as br = (wm −wr) · xm

−1 + bm. Then (3.6) becomes∫
Rr

∫
H(J,θ)∩S

ρbr((w
m −wr) · xm

−1 + bm) d voln0−r(x)db
r. (3.7)

Wewill upper bound the volume ofH(J, θ) by the volume of the corresponding set without the
inequalities,

H′(J, θ) :=
⋂
z∈Z

{
x ∈ Rn0 |wz,j0 · xl(z)−1 + bz,j0 = wz,j · xl(z)−1 + bz,j , ∀j ∈ Jz \ {j0}

}
.
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SinceH(J, θ) ⊆ H′(J, θ), we can upper bound (3.7) by∫
Rr

∫
H′(J,θ)∩S

ρbr((w
m −wr) · xm

−1 + bm) d voln0−r(x)db
r. (3.8)

Nowwewill use the co-area formula to express (3.8) as an integral overS alone. Recall that the
co-area formula says that ifψ ∈ L1(Rn) and g : Rn → Rr with r ≤ n is Lipschitz, then∫

Rr

∫
g−1(t)

ψ(x)d voln−r(x)dt =

∫
Rn

ψ(x)‖Jg(x)‖d voln(x),

whereJg is the r × n Jacobian of g and ‖Jg(x)‖ = det((Jg(x))(Jg(x))⊤)
1
2 .

In our case r = r, n = n0, which satisfy r ≤ n0. Further, br ∈ Rr plays the role of t ∈ Rr , and
Rn0 → Rr ; x 7→ ρbr((w

m −wr) ·xm
−1 + bm) plays the role ofψ. Since (wm −wr) ·xm

−1 + bm is
continuous and S is bounded, assuming ρbr is continuous, this is inL1(S). Finally, we set g : S →
Rr ; x 7→ ((wm −wr) · xm

−1 + bm), which is Lipschitz.
Hence (3.8) can be expressed as∫

S

ρbr((w
m −wr) · xm

−1 + bm) ‖J((wm −wr) · xm
−1 + bm)‖ dx.

Taking expectation with respect to all other weights and biases, and interchanging the integral
over S with the expectation (according to Fubini’s theorem, since the integral is non-negative),∫

S

E
[
ρbr((w

m −wr) · xm
−1 + bm) ‖J((wm −wr) · xm

−1 + bm)‖
]
dx.

Summing over all r-partial activation sub-patterns J ∈ Sr gives the desired result.

Based on the preceding Lemma 3.31, now we derive a more explicit upper bound expressed in
terms of properties of the probability distribution of the network parameters.

Theorem 3.10 (Upper bound on the expected volume of the non-linear locus). Consider a bounded
measurable set S ⊂ Rn0 and the settings of Theorem 3.9 with constantsCgrad andCbias evaluated over S.
Then, for any r ∈ {1, . . . , n0},

E[voln0−r(XN ,r ∩ S)]
voln0(S)

≤ (2CgradCbias)
r

(
rK

2r

)(
N

r

)
.

Proof of Theorem 3.10. By Lemma 3.31,E [voln0−r(XN ,r ∩ S)] is upper bounded by∑
J∈Sr

∫
S

E
[
ρbr((w

m −wr) · xm
−1 + bm) ‖J((wm −wr) · xm

−1 + bm)‖
]
dx.
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Since we have assumed that for any collection of t biases the conditional density given all
weights and the other biases can be upper-bounded with Ct

bias, we have ρbr((w
m − wr) · xm

−1 +

bm) ≤ Cr
bias.

As for the termE[‖J((wm −wr) · xm
−1 + bm)‖], note that

‖J((wm −wr) · xm
−1 + bm)‖

= det
(
J((wm −wr) · xm

−1 + bm)TJ((wm −wr) · xm
−1 + bm)

)1/2
= det

(
Gram

(
∇((wz1,j0 − wz1,j1) · xl(z1)−1 + bz1,j0), . . . ,

∇((wzm,j0 − wzm,jrm ) · xl(zm)−1 + bzm,j0)
))1/2

, (3.9)

where for any v1, . . . , vr ∈ Rn, (Gram(v1, . . . , vr))i,j = 〈vi, vj〉 is the associated Grammatrix.
It is known that the Gram determinant can also be expressed in terms of the exterior product of

vectors, meaning that (3.9) can be written as

‖∇((wz1,j0 − wz1,j1) · xl(z1)−1 + bz1,j0) ∧ · · · ∧ ∇((wzm,j0 − wzm,jrm ) · xl(zm)−1 + bzm,j0)‖,

which is the the r-dimensional volume of the parallelepiped inRn0 spanned by r elements. There-
fore, for J ∈ Sr with participating neurons Z , we can upper bound this expression by (see Gover
and Krikorian, 2010)∏

z∈Z

∏
j∈Jz\{j0}

‖∇((wz,j0 − wzi,j) · xl(z)−1 + bz,j0)‖

≤
∏
z∈Z

∏
j∈Jz\{j0}

2max
{
‖∇(wz,j0 · xl(z)−1)‖, ‖∇(wz,j · xl(z)−1)‖

}
≤ 2r max

z∈Z,j∈Jz

{
‖∇(wz,j · xl(z)−1)‖

}r
.

In the second line we use the triangle inequality. Considering the assumption that we have made
on the gradients, for the expectation we obtain the upper bound (2Cgrad)

r .
By Lemma 3.6, we can upper-bound the number of entries of the sum

∑
J∈Sr

with
(
rK
2r

)(
N
r

)
.

Combining everything, we get the final upper bound

(2CgradCbias)
r

(
rK

2r

)(
N

r

)
voln0(S).

This concludes the proof.
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3.E Proofs related to the expected number of regions

Theorem 3.9 (Upper bound on the expected number of partial activation regions). LetN be a fully-
connected feed-forwardmaxout network withn0 inputs and a total ofN rankK maxout units. Suppose we
have a probability distribution over the parameters so that:

1. The distribution of all weights has a density with respect to the Lebesgue measure onR#weights.

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the values
of all other weights and biases.

3. There existsCgrad > 0 so that for any t ∈ N and any pre-activation feature ζz,k,

sup
x∈Rn0

E[‖∇ζz,k(x)‖t] ≤ Ct
grad.

4. There existsCbias > 0 so that for any pre-activation features ζ1, . . . , ζt from any neurons, the con-
ditional density of their biases ρb1,...,bt given all the other weights and biases satisfies

sup
b1,...,bt∈R

ρb1,...,bt(b1, . . . , bt) ≤ Ct
bias.

Fix r ∈ {0, . . . , n0} and let T = 25CgradCbias. Then, there exists δ0 ≤ 1/(2CgradCbias) such that for all
cubesC ⊆ Rn0 with side length δ > δ0 we have

E[# r-partial activation regions ofN inC]
vol(C)

≤


(
rK
2r

)(
N
r

)
KN−r, N ≤ n0

(TKN)n0(n0K
2n0

)
(2K)rn0!

, N ≥ n0

.

Here the expectation is takenwith respect to thedistributionofweights andbiases inN . Of particular interest
is the case r = 0, which corresponds to the number of linear regions.

Proof of Theorem 3.9. The proof follows closely the arguments of Hanin and Rolnick (2019b, Proof
of Theorem 10), whereby we use appropriate supporting results for maxout networks and need to
accommodate the combinatorics depending on K . Fix a network N with rank-K maxout units,
input dimension n0 and output dimension 1. Let 0 ≤ r ≤ n0. ForN ≤ n0, the statement follows
direction from the simple upper bound on the number of distinct r-partial activation patterns given
in Lemma 3.6.

Consider now the case N ≥ n0. Fix a closed cube C ⊆ Rn0 of sidelength δ > 0. For any
t ∈ {0, . . . , n0} let

Ct := t-skeleton ofC
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denote the union of t-dimensional faces ofC . For example,C0 is the set of 2n0 vertices ofC ,Cn0−1

is the set of 2n0 facets ofC , andCn0 isC . In general,Ct consists of
(
n0

t

)
2n0−t faces of dimension t,

each with t-volume δt. Hence,

volt(Ct) =

(
n0
t

)
2n0−tδt. (3.10)

For any choice of θ let

Vt(θ) := XN ,t(θ) ∩ Ct.

By Lemma 3.33 below, for any t and almost every choice of θ, the setVt(θ) is a finite set of points.
For each t ∈ {0, . . . , n0}, we also define

Ct,ε := {x ∈ Rn0 | dist(x,Ct) ≤ ε},

the ε-thickening ofCt. For almost every θ, Lemma 3.34 ensures the existence of an ε > 0 such that
for all v ∈ Vt(θ), the radius-ε balls Bε(v) are contained in Ct,ε and are disjoint. Hence, writing
ωn0−t for the (n0 − t)-volume of the (n0 − t)-dimensional ball with unit radius,

voln0−t(XN ,t ∩ Ct,ε) ≥
∑
v∈Vt

εn0−tωn0−t = #Vt · εn0−tωn0−t.

Therefore, for all but a measure 0 set of θ ∈ R#params, there exists ε > 0 so that

voln0−t(XN ,t ∩ Ct,ε)

εn0−tωn0−t
≥ #Vt.

Thus taking the limit ε→ 0 and taking expectationwith respect to the parameter θ, and apply-
ing Fatou’s lemma to upper bound the result by the expression with exchanged limit and expecta-
tion,

E [#Vt] ≤ E
[
lim
ε→0

voln0−t(XN ,t ∩ Ct,ε)

εn0−tωn0−t

]
≤ lim

ε→0
E
[
voln0−t(XN ,t ∩ Ct,ε)

εn0−tωn0−t

]
.

Then,

E [#Vt] ≤ lim
ε→0

E
[
voln0−t(XN ,t ∩ Ct,ε)

voln0(Ct,ε)
· voln0(Ct,ε)

εn0−tωn0−t

]
= lim

ε→0
E
[
voln0−t(XN ,t ∩ Ct,ε)

voln0(Ct,ε)

]
· lim
ε→0

voln0(Ct,ε)

εn0−tωn0−t

≤(2CgradCbias)
t

(
tK

2t

)(
N

t

)
volt(Ct).
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To obtain the last line, the first term is upper bounded using Theorem 3.10, and the second term is
evaluated using

lim
ε→0

voln0(Ct,ε)

εn0−tωn0−t
= volt(Ct).

Combining this with Lemma 3.33 and the formula (3.10) for volt(Ct), we find

E [#{r-partial activation regions withR(Jr; θ) ∩ C 6= ∅}]

≤
n0∑
t=r

(
t

r

)
Kt−r(2CgradCbias)

t

(
tK

2t

)(
N

t

)(
n0
t

)
2n0−tδt

δ≥1/(2CgradCbias)

≤ (2δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−r

n0∑
t=r

(
t

r

)(
N

t

)(
n0
t

)
. (3.11)

The last line uses the assumption that δ ≥ 1/(2CgradCbias) and Lemma 3.32, which states that(
tK
2t

)
≤
(
nK
2n

)
for t ≤ n.

In the following we simplify (3.11). Note that
(
t
r

)
≤
∑t

r=0

(
t
r

)
= 2t ≤ 2n0 . Hence (3.11) can be

upper bounded by

(4δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−r

n0∑
t=r

(
N

t

)(
n0
t

)

= (4δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−r

n0∑
t=r

(
n0
t

)2
(
N
t

)(
n0

t

) .
Using n0 ≤ N , observe that(

N
t

)(
n0

t

) =
N ! · (n0 − t)!

(N − t)! · n0!
≤ N t · (n0 − t)!

n0!
=

Nn0

Nn0−t
· (n0 − t)!

n0!
=
Nn0

n0!
· (n0 − t)!

Nn0−t

≤N
n0

n0!
· (n0 − t)n0−t

Nn0−t
≤ Nn0

n0!
.

Also, using Vandermonde’s identity, observe that

n0∑
t=0

(
n0
t

)2

=

(
2n0
n0

)
≤ 4n0 .

Combing everything, (3.11) is upper bounded by

(16δCgradCbias)
n0

(
n0K

2n0

)
(2K)n0−rN

n0

n0!
= (32KCgradCbias)

n0

(
n0K

2n0

)
Nn0

(2K)rn0!
vol(C).
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Setting T = 25CgradCbias, we get

(TKN)n0
(
n0K
2n0

)
(2K)rn0!

vol(C).

This concludes the proof.

We state and prove lemmas used in the proof of Theorem 3.9.

Lemma 3.32. For any t ≤ n,
(
tK
2t

)
≤
(
nK
2n

)
.

Proof. To see this, note that
(
tK
2t

)
≤
(
nK
2n

)
is equivalent to the following:

(Kr)!

(2r)!(Kr − 2r)!
≤ (Kn)!

(2n)!(Kn− 2n)!

(2n)!

(2r)!

(Kn− 2n)!

(Kr − 2r)!
≤ (Kn)!

(Kr)!

2n−2r∏
i=1

(2r + i)

(K−2)n−(K−2)r∏
j=1

(Kr − 2r + j) ≤
Kn−Kr∏
k=1

(Kr + k).

Since
∏2n−2r

i=1 (2r + i) ≤
∏2n−2r

k=1 (Kr + k) and
∏(K−2)n−(K−2)r

j=1 (Kr − 2r + j) ≤∏Kn−Kr
k=2n−2r+1(Kr + k) the inequality holds.

Lemma 3.33. For almost every θ, for each t ∈ {0, . . . , n0}, the set Vt(θ) = XN ,t(θ) ∩ Ct consists of
finitely many points and

#{r-partial activation regionsR(Jr, θ)withR(Jr, θ) ∩ C 6= ∅} ≤
n0∑
t=r

(
t

r

)
Kt−r#Vt(θ), (3.12)

where #Vt(θ) is the number of points in Vt(θ).

Proof. The proof is similar to the proof of (Hanin and Rolnick, 2019b, Lemma 12). The difference
lies in the types of equations that appear in the partial activation regions of maxout networks. The
dimension of Vt(θ) is 0with probability 1, because the setCt has dimension t and, by Lemma 3.16,
with probability 1 the setXN ,t coincides locally with a subspace of codimension t. The intersection
of two generic affine spaces of complementary dimension has dimension 0.

Now we prove (3.12). If Jr is an r-partial activation pattern andR(Jr, θ) ∩ C 6= ∅, then the
closure clR(Jr, θ)∩C is anon-emptypolytope. The intersection is boundedbecauseC is bounded,
and, by Lemma 3.4, the closure ofR(Jr, θ) is a polyhedron. As a non-empty polytope, this set has
at least one vertex. Generically, if a vertex is in an (n0 − t)-face of clR(Jr, θ), then it is in a t-face
ofC . Hence, with probability 1,

R(Jr, θ) ∩ C 6= ∅ ⇒ ∃ t ∈ {r, . . . , n0} s.t. clR(Jr, θ) ∩ Vt 6= ∅.
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Thus, with probability 1,

#{r-partial activation regions withR(Jr, θ) ∩ C 6= ∅} ≤
n0∑
t=r

Tt#Vt,

whereTt is themaximumover allv ∈ Vt of thenumber of r-partial activation regionswhose closure
contains v.

To complete the proof, it remains to check that, with probability 1,

Tt ≤
(
t

r

)
Kt−r.

By the definition of XN ,t, each v ∈ Vt is an element of exactly one t-partial activation region
defined by t equations. To upper bound the number of r-partial activation regions that contain v,
we upper bound the number of ways in which one can get an r-partial region from this t-partial
region. We have

(
t
r

)
options to pick r equations that will remain satisfied. In each case, there are at

most t − r neurons for which we need to specify a pre-activation feature attaining the maximum,
for a total of at mostKt−r options. This concludes the proof.

Lemma 3.34. Fix t ∈ {0, . . . n0}. For almost every choice of θ, there exists ε > 0 (depending on θ) so
that the ballsBε(v) of radius ε centered at v ∈ Vt are disjoint and

voln0−t(XN ,t ∩ Bε(v)) = εn0−tωn0−t,

whereωt is the volume of a unit ball inRt.

Proof. The proof is similar to the proof of Hanin and Rolnick (2019b, Lemma 13), whereby we use
Lemma 3.33 and the results formaxout networks obtained in Section 3.A. By Lemma 3.33, with prob-
ability 1 over θ, each Vt is a finite set of points. Hence, we may choose ε > 0 sufficiently small so
that the ballsBε(v) are disjoint. Moreover, by Lemma 3.16, in a sufficiently small neighborhood of
v ∈ Vt, the setXN ,t coincideswith a (n0−t)-dimensional subspace. The (n0−t)-dimensional vol-
ume of this subspace inBε(v) is the volume of (n0 − t)-dimensional ball of radius ε, which equals
εn0−tωn0−t, completing the proof.

To conclude this section,we compare the results on thenumbers of activation regions ofmaxout
and ReLU networks in Table 3.2.

3.F Upper bounding the constants

Webriefly discuss the constantsCbias andCbias in the hypothesis of Theorem3.9. The constantCbias

canbeevaluatedat initializationusing thedefinition sinceweknowthedistributionofbiases. Recall
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Table 3.2: Comparison of the activation region results for maxout and ReLU networks.

RELU NETWORK MAXOUTNETWORK

Generic lower bound on the number
of linear regions for a deep network

1, Remark 3.27
∑n0

j=0

(
n1

j

)
, Theorem 3.8

Trivial upper-bound on the number
of r-partial activation regions

(
N
r

)
2N−r, (Hanin and

Rolnick, 2019b, Theorem 10)

(
rK
2r

)(
N
r

)
KN−r, Lemma 3.6,

see also Proposition 3.14

Upper-bound on the expected num-
ber of r-partial activation regions,
N ≥ n0

(TN)n0

2rn0!
, T = 25CgradCbias,

(Hanin and Rolnick, 2019b,
Theorem 10)

(TKN)n0(n0K
2n0

)
(2K)rn0!

,
T = 25CgradCbias,

Theorem 3.9

Upper bound on the expected (n0 −
r)-dimensional volume of the non-
linear locus

(2CgradCbias)
r
(
N
r

)
, (Hanin

and Rolnick, 2019a,
Corollary 7)

(2CgradCbias)
r
(
rK
2r

)(
N
r

)
,

Theorem 3.10

that we definedCbias as an upper bound on(
sup

b1,...,bt∈R
ρb1,...,bt(b1, . . . , bt)

)1/t

,

where ρb1,...,bt is the conditional distribution of any collection of biases given all the other weights
and biases inN and t ∈ N. If the biases are sampled independently, independently of the weights,
this equals supb∈R ρb(b). Then, for instance, for a normal distribution with standard deviation√
C/nl, the constantCbias can be chosen as

max
l∈{0,...,L−1}

√
nl

2πC
.

The constantCgrad was defined as an upper bound on

(
sup

x∈Rn0

E[‖∇ζz,k(x)‖t]
)1/t

.

Therefore we need to upper-bound E
[
‖∇ζz,k(x)‖t

]
. This expression stands for the t-th mo-

ment of the L2 norm of the gradient of a pre-activation feature ζz,k in a network, with respect to the
input to the network.

Onepossible calculation is as follows. WeconsiderJx = [∇xN1(x; θ), . . . ,∇xNnL(x; θ)]
⊤ the

Jacobian of the output vector with respect to the input, for a given parameter θ and input x. Note
that the gradient ∇ζz,k(x) for a pre-activation feature of a unit in the l-th layer of a network is a
row in the Jacobian matrix of an l-layer network. Therefore, ‖∇ζz,k(x)‖ can be upper-bounded by
the spectral norm ‖Jx‖ of the Jacobian, and the moments of the Jacobian norm can be used as an
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upper-bound on the t-th moments of the gradient norm, t ≥ 1.

Proposition 3.35 (Upper bound on the moments of the Jacobian matrix norm). Let N be a fully-
connected feed-forward network with maxout units of rankK and a linear last layer. Let the network have
L layers of widths n1, . . . , nL and n0 inputs. Assume that the weights and biases of the units in the l-th
layer are sampled iid from a Gaussian distribution with mean 0 and variance c/nl−1, l = 1, . . . , L and c
is some constant c ∈ R, c > 0. Then

E[‖Jx‖t] ≤ ct/2n
−t/2
0 E[χt

nL
]

L−1∏
l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/2
 ,

where Jx is the Jacobian as defined above, x ∈ Rn0 ; t ≥ 1, t ∈ N;m(K)
nl−1,i

is the largest order statistic
in a sample of sizeK of χ2

nl−1
variables. Recall that the largest order statistic is a random variable defined

as the maximum of a random sample and that a sum of squares of n independent Gaussian variables has a
chi-squared distributionχ2

n.

Proof. Our first goal will be to upper-bound ‖Jx‖ = sup∥u∥=1 ‖Jxu‖. The Jacobian Jx of

N (x) : Rn0 → RnL can be written as a product of matricesW (l), l = 1, . . . , L depending on the
activation region of the input x. The matrixW (l) consists of rowsW (l)

i = W
(l)
i,ki

∈ Rnl−1 , where

ki = argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k} for i = 1, . . . , nl, and x(l−1) is the l-th layer’s input. For the

last layer, which is linear, we haveW (L)
=W (L). Thus for any given u ∈ Rn0 we have

‖Jxu‖ = ‖W (L)W
(L−1) · · ·W (1)

u‖.

Consider some u(0) with ‖u(0)‖ = 1 and assume ‖W (1)
u(0)‖ 6= 0. Note that for fixed u(0), the

probability ofW (1) being such that ‖W (1)
u(0)‖ = 0 is 0. Multiplying and dividing by ‖W (1)

u(0)‖
we get

‖W (L)W
(L−1) · · ·W (1)

u(0)‖‖W
(1)
u(0)‖

‖W (1)
u(0)‖

=

∥∥∥∥∥W (L)W
(L−1) · · ·W (2) W

(1)
u(0)

‖W (1)
u(0)‖

∥∥∥∥∥ ‖W (1)
u(0)‖

=
∥∥∥W (L)W

(L−1) · · ·W (2)
u(1)

∥∥∥ ‖W (1)
u(0)‖,

where u(1) = W
(1)

u(0)

∥W (1)
u(0)∥

. Notice, ‖u(1)‖ = 1. Repeating this procedure layer-by-layer, we get

‖W (L)u(L−1)‖‖W (L−1)
u(L−2)‖ · · · ‖W (2)

u(1)‖‖W (1)
u(0)‖.

77



Chapter 3. On the expected complexity of maxout networks

Now consider one of the factors, ‖W (l)
u(l−1)‖. We have

‖W (l)
u(l−1)‖2 =

nl∑
i=1

〈W (l)
i , u

(l−1)〉2
Cauchy–Schwarz
∥u(l−1)∥=1

≤
nl∑
i=1

‖W (l)
i ‖2 ≤

nl∑
i=1

max
k∈[K]

{
‖W (l)

i,k‖
2
}
.

Notice that this upper bound only depends onW (l) and is independent of all other weightmatrices
and of the input vector.

According to our assumptions,W (l)
i,k

d
=
√

c
nl−1

v, where v is a standard Gaussian random vec-

tor in Rnl−1 . Therefore, ‖W (l)
i,k‖

2 d
= c

nl−1
χ2
nl−1

has the distribution of a chi-squared random vari-

able scaled by c/nl−1. Moreover, since the vectorsW (l)
i,1 , . . . ,W

(l)
i,K consist of the same number of

separate iid entries, the variables ‖W (l)
i,1 ‖2, . . . , ‖W

(l)
i,K‖2 are iid. In turn, maxk∈[K]

{
‖W (l)

i,k‖
2
}

d
=

c
nl−1

m
(K)
nl−1,i

, wherem(K)
nl−1,i

is the largest order statistic in a sample of sizeK of χ2
nl−1

variables.

Notice that ‖W (L)u(L−1)‖2 d
= c

nL−1
χ2
nL

. To see this, recall that if u is a fixed vector and
w is a Gaussian random vector with mean µ and covariance matrix Σ, then the product u⊤w is
Gaussian with mean u⊤µ and variance u⊤Σu. Hence, sinceW (L)

i is a Gaussian vector with mean
zero and covariance matrix Σ = c

nL−1
I , W (L)

i u(L−1) is Gaussian with mean zero and variance
c

nL−1
‖u(L−1)‖2 = c

nL−1
.

Combining everything, we get

‖Jx‖ = sup
∥u∥=1

‖Jxu‖ ≤
(

c

nL−1
χ2
nL

)1/2
(

c

nL−2

nL−1∑
i=1

m(K)
nL−2

)1/2

· · ·

(
c

n0

n1∑
i=1

m(K)
n0

)1/2

=cL/2χnL

(
L−1∏
l=0

n
−1/2
l

)
L−1∏
l=1

(
nl∑
i=1

m
(K)
nl−1,i

)1/2

.

Now using the monotonicity of the expectation, the moments of the right hand side upper-
bound those of the left hand side. Moreover, using the independence of the individual factors, the
expectation factorizes. For the t-th moment we get

E[‖Jx‖t] ≤ E

ctL/2χnL

(
L−1∏
l=0

n
−1/2
l

)
L−1∏
l=1

(
nl∑
i=1

m
(K)
nl−1,i

)t/2


= ct/2n
−t/2
0 E[χt

nL
]
L−1∏
l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/2
 .

Corollary 3.36 (Upper bound onCgrad). Under the same assumptions as in Proposition 3.35, assuming
that c is set according to He initialization, meaning c = 2, or maxout-He initialization (see Table 3.1 for
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specific values of c for variousK), the following expression can be used as the value forCgrad:

(
c

n0

)1/2 (
nL(nL + t)

t
2
−1
)1/t L−1∏

l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/2
1/t

,

wherem(K)
nl−1,i

is the largest order statistic in a sample of sizeK ofχ2
nl−1

variables.

Proof. The constantCgrad was defined as an upper bound on

(
sup

x∈Rn0

E[‖∇ζz,k(x)‖t]
)1/t

.

Therefore, using the upper-bound on the moments of the Jacobian norm from Proposition 3.35,
an upper-bound on the following expression can be used as a value forCgrad:

c1/2n
−1/2
0

(
E[χt

nL
]
)1/t L−1∏

l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/2
1/t

.

Themoments of the chi distribution are

E
[
χt
nL

]
= 2t/2

Γ((nL + t)/2)

Γ(nL/2)
.

Using an upper-bound on a Gamma function ratio (see Jameson, 2013, Equation 12), this can be
upper-bounded with

nL(nL + t)
t
2
−1.

The factor involvingm(K)
nl−1 can be upper-bounded by considering the explicit expression for the

moments of the largest order statistic of chi-squared variables. The closed form for these moments
is available (see Nadarajah, 2008), but they have complicated form and we will keep the factor in-
volvingm(K)

nl−1 as it is. Then the total upper bound is

(
c

n0

)1/2 (
nL(nL + t)

t
2
−1
)1/t L−1∏

l=1

E

( c

nl

nl∑
i=1

m
(K)
nl−1,i

)t/2
1/t

.

Estimating the moments of the gradient of maxout networks is a challenging topic, as can be
seen from the above discussion, and is worthy of a separate investigation. It might be possible to
obtain tighter upper bounds on it and onCgrad, a question that we leave for future work.
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3.G Expected number of regions for networks without bias

Zero bias Small bias Non-zero bias

Figure 3.9: Linear regions of a 3 layer networkwith 100 units and themaxout rankK = 2. The net-
workwas initializedwith themaxout-He distribution. Activation regions of amaxout networkwith
zero biases are convex cones. Small biases are initialized as the biases sampled from the maxout-
He distribution multiplied by 0.1. The majority of linear regions of a network with small biases are
cones, and the ones that are not are small and concentrated around zero.

Zero biases of ReLU networks were discussed in Hanin and Rolnick (2019b) and studied in de-
tail in Steinwart (2019). There is no distribution on the biases in the zero bias case, meaning that
conditions on the biases from Theorem 3.9 are not satisfied. We closely follow the proofs in Hanin
and Rolnick (2019b) and show that the arguments similar to those regarding the zero bias case in
the ReLUnetworks also apply to themaxout networks. According to Lemma 3.37, activation regions
of zero-bias maxout networks are convex cones, see Figure 3.9 for the illustration. In Corollary 3.39,
we come to a conclusion that the number of activation regions in expectation in a networkwith zero
biases grows asO(n0(KN)n0−1

(K(n0−1)
2(n0−1)

)
).

Lemma 3.37. LetN be a maxout network with biases set to zero. Then,

(a) N is nonnegative homogeneous : N (cx) = cN (x) for each c ≥ 0.

(b) For every activation regionR ofN , and every pointx inR, all points cx are also inR for c > 0 and
R is a convex polyhedral cone.

Proof of Lemma 3.37. Each neuron of the network computes a function of the form z(x1, . . . , xn) =

maxk∈[K] {
∑n

i=1wi,k · xi}. Note that for any c ≥ 0:

z(cx1, . . . , cxn) = max
k∈[K]

{
c

n∑
i=1

wi,k · xi

}
= c · max

k∈[K]

{
n∑

i=1

wi,k · xi

}
= c · z(x1, . . . , xn).

Therefore, eachneuron is equivariantundermultiplicationbyanonnegativeconstantc, and thus the
overall network as well, proving (a). If c > 0, the activation patterns for x and cx are also identical,
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since for any inequality in the activation region definition we have

n∑
i=1

wi,j · cxi >
n∑

i=1

wi,j′ · cxi ⇐⇒
n∑

i=1

wi,j · xi >
n∑

i=1

wi,j′ · xi, j, j′ ∈ [K].

This implies that x and cx lie in the same activation region, and thatR is a convex polyhedral
cone, see e.g. Chandru and Hooker (2011). This proves (b).

Proposition 3.38 (Networks without biases do not have more regions). Suppose thatN is a maxout
network with biases and conditions from Theorem 3.9 are satisfied. Let N0 be the same network with all
biases set to 0. Then, the total number of activation regions (in all the input space) forN0 is no more than
that forN .

Proof of Proposition 3.38. Wedefine an injectivemapping from activation regions ofN0 to regions of
N . For each region R of N0, pick a point xR ∈ R. By Lemma 3.37, cxR ∈ R for each c > 0.
LetN1/c be the network obtained fromN by dividing all biases by c, and observe thatN (cxR) =

cN1/c(xR), with the same activation pattern between the two networks.
By picking c sufficiently large,N1/c becomes arbitrarily close toN0. Therefore, for some suffi-

ciently large c,N0(cxR) andN (cxR) have the same pattern of activations. Regions ofN in which
cxR lies are distinct for all distinctR. Thus, the number of regions ofN is at least as large as the
number of regions ofN0.

We obtain following corollary of Theorem 3.9 for the zero-bias case.

Corollary 3.39 (Expected number of activation regions of zero-bias networks). Suppose thatN0 is a
fully-connected feed-forwardmaxout networkwith zero biases,n0 inputs, a total ofN rankKmaxout units.
Also, suppose that all conditions fromTheorem 3.9, except for the conditions on the biases, are satisfied. Then
there exists a constant T ′ depending onCgrad so that

E[#activation regions ofN0] ≤


KN , N ≤ n0

2n0
(T ′KN)n0−1(K(n0−1)

2(n0−1)
)

(n0−1)! , N ≥ n0

.

The expectation is taken with respect to the distribution of weights inN0.

Proof of Corollary 3.39. Based on Proposition 3.38 we can use the same upper bound as for the net-
works with biases, thus for the caseN ≤ n0, the expectation is upper bounded withKN .

Now consider the caseN ≥ n0. Wewill add biases toN0 in such away that the bias conditions
of Theorem3.9 are satisfiedwith someC ′

bias. Denote the resulting networkwithN . Then, by Propo-
sition 3.38,N has a region corresponding to each region ofN0. All the corresponding regions inN
are unbounded because according to Proposition 3.38 for any xR from a region ofN0 there exists
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a constant c > 0 so that cxR belongs to a region inN . Since all regions inN0 are unbounded, all
corresponding regions inN are unbounded under such amapping.

Therefore, toobtain the result, it is enough toupper-bound thenumberofunboundedactivation
regions ofN . Similarly to the proof of Theorem 3.9, consider a hypercubewith a side length δ > δ0,
large enough to interest all the unbounded regions. Then the total number of unbounded activation
regions ofN is upper bounded by the sum of the numbers of activation regions intersecting each of
the hypercube 2n0 facets, each of dimension (n0−1). By Theorem3.9, the expected number of acti-
vation regionsofN inRn0−1 is upperboundedwith (δ25CgradC

′
biasKN)n0−1

(K(n0−1)
2(n0−1)

)
/(n0 − 1)!.

Denoting δ25CgradC
′
bias with T ′ and combining everything we get the desired result.

3.H Proofs related to the decision boundary

3.H.1 Simple upper bound on the number of pieces of the decision boundary

A network used for multi-class classification into M ∈ N,M ≥ 2 classes can be seen as
a network with a rank M maxout unit on top. Therefore, to discuss the decision boundary,
we consider r-partial activation regions, r ≥ 1, with at least one equation in the last unit.
With Jr

DB, we denote the r-partial activation patterns corresponding to such regions and with
XDB,r :=

⋃
Jr
DB∈PDB,r

R(Jr
DB; θ) their union. All decision boundary is then written asXDB .

Lemma 3.40 (Simple upper bound on the number of r-partial activation patterns of the de-
cision boundary). Let r ∈ N+. The number of r-partial activation patterns in the decision
boundary of a network with a total of N rank-K maxout units is upper bounded by |PDB,r| ≤∑min{M−1,r}

i=1

(
M
i+1

)(K(r−i)
2(r−i)

)(
N
r−i

)
KN−r+i. The number of r-partial activation sub-patterns is upper

bounded by |SDB,r| ≤
∑min{M−1,r}

i=1

(
M
i+1

)(K(r−i)
2(r−i)

)(
N
r−i

)
.

Proof of Lemma 3.40. Activation patterns for the decision boundary regions should have at least one
equality in the upper unit. At the same time, themaximumpossible number of equations in the last
unit ismin{M − 1, r}. To get all suitable activation patternswe need to sumover all these options.

Now consider a fixed number of equations i ∈ {1, . . . ,min{M − 1, r}}. The number of ways
to choose them is

(
M
i+1

)
and the number of options for the all other units in the network is given by

Lemma 3.6 for r − i. Combining everything, we get the claimed statement.

3.H.2 Lower bound on themaximumnumber of pieces of the decision boundary

The lower bound in the second item of Theorem 3.21 is based on a construction of parameters for
which the network maps an n-cube in the input space to an n-cube in the output space in many-
to-one fashion. This means that any feature implemented over the last layer will replicate multiple
times over the input layer. We infer the following lower bound on the maximum number of pieces
of the decision boundary of a maxout network.
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Proposition 3.41 (Lower boundon themaximumnumber of pieces of the decisionboundary). Con-
sider a networkN withn0 inputs andL layers ofn1, . . . , nL rank-K maxout units followed by anM -class
classifier. Suppose n ≤ n0, nl

n even, and el = min{n0, . . . , nl−1}. Denote byN(M,n) the maximum
number of boundary pieces implemented by anM -class classifier over ann-cube. Then themaximumnum-
ber of linear pieces of the decision boundary ofN is lower bounded byN(M,n)

∏L
l=1(

nl
n (K − 1) + 1)n.

If n ≥M or n ≥ 4,N(M,n) =
(
M
2

)
.

The asymptotic order of this bound isΩ(M2
∏L

l=1(nlK)n0).

Proof. We use the construction of parameters fromMontúfar et al. (2022, Proposition 3.11) refining
a previous construction for ReLU networks (Montufar et al., 2014) to have the network represent a
many-to-onemap. There are

∏L
l=1(

nl
n (K−1)+1)n distinct linear regionswhose image in the out-

put space of the last layer contains an n-cube. The linear pieces of the decision boundary of anM -
class classifier over ann-cube at theL-th layerwill have a correspondingmultiplicity over the input
space. AnM -class classifier is implemented asRM → [M ]; y = (y1, . . . , yM ) 7→ argmaxr∈[M ] yr .
This has

(
M
2

)
boundaries, one between any two classes. If n ≥ M , then the image of the preced-

ing layers intersects all of these boundaries. More generally, the number of boundary pieces of an
M -class classifier over n-dimensional space can be seen to correspond to the number of edges of
a polytope withM vertices in n-dimensional space. The trivial upper boundN(M,n) ≤

(
M
2

)
is

attained if 1 < bn2 c. This follows form the celebrated Upper Bound Theorem for the maximum
number of faces of convex polytopes (McMullen, 1970).

3.H.3 Upper bound on the expected volume of the decision boundary

Theorem 3.12 (Upper bound on the volume of the (n0 − r)-skeleton of the decision boundary).
Consider a bounded measurable set S ⊂ Rn0 . Consider the notation and assumptions of Theorem 3.9,
whereby the constantsCgrad andCbias are over S. Then, for any r ∈ {1, . . . , n0}we have

E[voln0−r(XDB,r ∩ S)]
voln0(S)

≤ (2CgradCbias)
r

min{M−1,r}∑
i=1

(
M

i+ 1

)(
K(r − i)

2(r − i)

)(
N

r − i

)
.

Proof of Theorem 3.12. Using Lemma 3.31, but considering only r-partial activation patterns that be-
long to the decision boundary, volume of the (n0 − r)-skeleton of the decision boundary can be
upper-bounded with

∑
Ĵr
DB

∫
S

E
[
ρbr((w

m −wr) · xm
−1 + bm) ‖J((wm −wr) · xm

−1 + bm)‖
]
dx.

Upper-bounding the integral as in Theorem 3.10, but using Lemma 3.40 to count the number of en-
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tries in the sum, we get the final upper-bound

(2CgradCbias)
r

min{M−1,r}∑
i=1

(
N

r − i

)(
K(r − i)

2(r − i)

)(
M

i+ 1

)
voln0(S).

3.H.4 Upper bound on the expected number of pieces of the decision boundary

Lemma 3.42 (Upper bound on the expected number of r-partial activation regions of the decision
boundary). LetN be a fully-connected feed-forwardmaxout network, withn0 inputs, a total ofN rankK
maxout units, andM linear output units used for multi-classification. Fix r ∈ {1, . . . , n0}. Then, under
the assumptions of Theorem 3.9, there exists δ0 ≤ 1/(2CgradCbias) such that for all cubes C ⊆ Rn0 with
side length δ > δ0,

E
[ # r-partial activation regions in
the decision boundary ofN in C

]
vol(C)

≤



∑min{M−1,r}
i=1

(
M
i+1

)(K(r−i)
2(r−i)

)(
N
r−i

)
KN−r+i, N ≤ n0

(24CgradCbiasN)n0 (2K)n0−1

n0!

×
∑min{M−1,n0}

i=1

(
M
i+1

)(K(n0−i)
2(n0−i)

)∏i
j=1(n0−j+1)∏i
j=1(N−1+j)

, N ≥ n0

.

Here the expectation is taken with respect to the distribution of weights and biases inN .

Proof of Lemma 3.42. Result for the caseN ≤ n0 arises from Lemma 3.40. ConsiderN ≥ n0. The
proof closely follows the proof of Theorem 3.10, and we only highlight the differences. Based on
Lemma 3.12,

E [#Vt] ≤ (2CgradCbias)
t

min{M−1,t}∑
i=1

(
N

t− i

)(
K(t− i)

2(t− i)

)(
M

i+ 1

)
volt(Ct).

Therefore, the upper bound on the expected number of r-partial activation regions in the deci-
sion boundary is

n0∑
t=r

(
t

r

)
Kt−r(2CgradCbias)

t

min{M−1,t}∑
i=1

(
N

t− i

)(
K(t− i)

2(t− i)

)(
M

i+ 1

)(
n0
t

)
2n0−tδt

≤ (4δCgradCbias)
n0(2K)n0−r

min{M−1,n0}∑
i=1

(
M

i+ 1

)(
K(n0 − i)

2(n0 − i)

) n0∑
t=r

(
N

t− i

)(
n0
t

)
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Re-writing
(
N
t−i

)(
n0

t

)
as
(
n0

t

)2 ( N
t−i

)
(n0

t
)
we can upper-bound it with

4n0

∏i
j=1(t− j + 1)∏i
j=1(N − t+ j)

Nn0

n0!
≤ 4n0

∏i
j=1(n0 − j + 1)∏i
j=1(N − r + j)

Nn0

n0!
.

The final upper bound is then

(25CgradCbiasKN)n0

(2K)rn0!

min{M−1,n0}∑
i=1

(
M

i+ 1

)(
K(n0 − i)

2(n0 − i)

)∏i
j=1(n0 − j + 1)∏i
j=1(N − r + j)

vol(C).

Dividing this expression by vol(C)we get the desired result.

The next theorem follows immediately from Lemma 3.42 if r is set to 1.

Theorem3.11 (Upper bound on the expected number of linear pieces of the decision boundary). Let
N be a fully-connected feedforward maxout network, with n0 inputs, a total ofN rank-K maxout units,
andM linear output units used for multi-class classification. Under the assumptions of Theorem 3.9, there
exists δ0 ≤ 1/(2CgradCbias) such that for all cubesC ⊆ Rn0 with side length δ > δ0,

E
[ # linear pieces in the
decision boundary ofN inC

]
vol(C)

≤


(
M
2

)
KN , N ≤ n0

(24CgradCbias)
n0 (2KN)n0−1

(n0−1)!

(
M
2

)(K(n0−1)
2(n0−1)

)
, N ≥ n0

.

Here the expectation is taken with respect to the distribution of weights and biases inN .

3.H.5 Lower bound on the expected distance to the decision boundary

Now, using an approach similar to Hanin and Rolnick (2019a, Corollary 5), who provided a lower
bound on the expected distance to the boundary of linear regions, we discuss a lower bound on the
distance to the decision boundary. Wewill use the following result from that work.

Lemma 3.43 (Hanin and Rolnick 2019a, Lemma 12). Fix a positive integer n ≥ 1, and letQ ⊆ Rn

be a compact continuous piecewise linear submanifold with finitely many pieces. DefineQ0 = ∅ and let
Qt be the union of the interiors of all k-dimensional pieces ofQ \ (Q0 ∪ · · · ∪ Qt−1). Denote by Tε(X)

the ε-tubular neighborhood of anyX ⊂ Rn. We have voln(Tε(Q)) ≤
∑n

t=0 ωn−tε
n−t volk(Qt),where

ωd := volume of ball of radius 1 inRd.

Wewill prove the following.

Corollary 3.13 (Distance to the decision boundary). SupposeN is as in Theorem 3.9. For any compact
set S ⊂ Rn0 let x be a uniform point in S. There exists c > 0 independent of S so that

E[distance(x,XDB)] ≥
c

2CgradCbiasMm+1m
,
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wherem := min{M − 1, n0}.

Proof of Corollary 3.13. Letx ∈ K beuniformly chosen. Then, for any ε > 0, usingMarkov’s inequal-
ity and Lemma 3.43, we have

E[distance(x,XDB)] ≥ εP (distance(x,XDB) > ε) = ε(1− P (distance(x,XDB) ≤ ε))

= ε (1− E [voln0(Tε(XDB)]) ≥ ε

(
1−

n0∑
t=1

ωn0−tε
n0−tE [voln0−t(XDB)]

)

The upper bound from Theorem 3.12 can be upper bounded further with

E[voln0−t(XDB,t ∩ S)] ≤(2CgradCbias)
t

min{M−1,t}∑
i=1

(
M

i+ 1

)(
K(t− i)

2(t− i)

)(
N

t− i

)
voln0(S)

≤(2CgradCbias)
t(4K2N)t−1Mm∗+1m∗ voln0(S),

wherem∗ := min{M − 1, t}. Then the expectation of the distance can be lower bounded with

ε

(
1−

n0∑
t=1

(2CgradCbiasε)
t(4εK2N)t−1Mm∗+1m∗

)
≥ ε

(
1− 2CgradCbiasM

m+1mε
)
,

wherem := min{M − 1, n0}. Taking ε to be a small constant c times 1/(2CgradCbiasM
m+1m)

completes the proof.

Remark 3.44 (Decision boundary of ReLU networks). All proofs consider the indecision locus of
the last unit on top of the network and reuse results on the volume of the boundary and the number
of activation regions. If one sets K to 2, these results differ only in 2−r from those for the ReLU
networks. Therefore, the decision boundary analysis should also apply to the ReLU networks if one
setsK to 2with a difference only in the constant.

3.I Counting algorithms

3.I.1 Approximate counting of the activation regions

First, we describe an approximatemethod for counting linear regions that is useful for quickly esti-
mating the number of linear regions or plotting them.

We generate a grid of inputs in an n0-dimensional cube, compute the gradients with respect to
the input, which is simply a product of weights on the path that corresponds to a given input, and
then sum the gradient values for each input dimension of one input. Then, we compute the number
of unique sums and use it as the number of linear regions.
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The method is not exact because it works by computing network gradients on a grid, so it is
possible tomiss a small region. Also, it does not distinguish between regionswith the samegradient
value, which is onemore reason it might miss some linear regions and why it counts linear regions,
not activation regions. However, fromwhatwehave seen, if the grid hasmanypoints, the difference
between the exact and approximate method is not that big.

3.I.2 Exact counting of the activation regions

The algorithm starts with a cube in which we want to count the activation regions defined with a
set of linear inequalities in Rn0 . We go through the network layer by layer, unit by unit, and for
each unit, we determine if its pre-activation features attain a maximum on the regions obtained
so far by checking the feasibility of the corresponding linear inequalities systems. For this, we
use linear programming. More specifically, an interior-point method implementation from
scipy.optimize.linprog. The use of linear programming is justified since, according to Lemma
3.4, the activation regions are convex.

The input to the simplex method becomes the combined system of inequalities for the region
and the pre-activation feature. We set the objective to zero, meaning that any x can satisfy it. One
has to use non-strict inequalities in linear programmingmethods, implying the boundary of activa-
tion regions is also included. We also add a small ε = 1e−6 to avoid zero solutions in a zero bias
case. The inequalities for a pre-activation feature of some neuron z have the form

{x ∈ Rn0 | az,j0(x; θ) + bz,j0 ≥ az,i(x; θ) + bz,i + ε, ∀i ∈ [K]\[j0]}.

As a result, we get a new list of activation regions and pass it to the next unit.
To correctly estimate inequalities corresponding to a pre-activation feature on a specific region,

one has to keep track of the function computed on this region, which has the form: w(l)
J . . . (w

(0)
J ·

x+ b
(0)
J ) + · · ·+ b

(l)
J , where J is an activation pattern of the region.

The pseudocode for the algorithm is in Algorithm 3.1, and the pseudocode for a check for one
pre-activation feature is in Algorithm 3.2.

3.I.3 Exact counting of linear pieces in the decision boundary

We define an algorithm for exactly counting linear pieces in the decision boundary based on the al-
gorithm from Section 3.I.2. Consider a classification problem withM classes, and to describe the
decision boundary, add a maxout unit of rankM on top of the network. To count the number of
linear pieces in the decision boundary, for each pair of classes, go through all the activation regions
of the network. Construct a linear program for which the set of inequalities is given by a union of
the region inequalities and inequalities which determine if the given classes attainmaximum. Also,
add the equality between these two classes. If the problem is feasible, there is a piece in the deci-
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Algorithm 3.1 Exactly Count the Number of Activation Regions in aMaxout Network
1: function CountActivationRegions
2: activation_regions = [starting_cube]
3: for layer in {1, . . . , L} do
4: for unit in layer do
5: new_activation_regions = []
6: for region in activation_regions do
7: for feature in unit do
8: ▷ See Algorithm 3.2
9: if NewRegionCheck(unit.features, feature, region) then
10: new_activation_regions.append(new_region)
11: activation_regions = new_activation_regions
12: for region in activation_regions do
13: region.function = region.next_layer_function
14: region.next_layer_function = []
15: return length(activation_regions)

sion boundary. At the end of this process, one gets the total number of linear pieces in the decision
boundary.

3.I.4 Algorithm discussion

There are two useful modifications to the method. First, to count the number of regions in a ReLU
network instead of systems of (K − 1) linear inequalities, one can use inequalities of the formw ·
x+ b ≥ 0 andw · x+ b ≤ 0.

Second, to compute the number of activation regions in a slice, one can define a parametrization
of the input space. We consider as the slice of a cube C the 2-space through three pointsx1, x2, x3 ∈
Rn0 , meaning the slice has the formV = {x = v0+v1y1+v2y2 ∈ Rn0 : (y1, y2) ∈ R2∩C}, where
v0 = (x1+x2+x3)/3 ∈ Rn0 , and v1, v2 ∈ Rn0 are an orthogonal basis of span{x2−x1, x3−x1},
and v1, v2 are orthonormal. We can evaluate the network function over such a slice by augmenting
the network by a linear layerϕ : R2 → Rn0 withweights v1, v2 and biases v0. We used images from
3 different classes as the points that define the slice.

We usually performed the computation in a 2D slice, which is reasonably fast because the num-
ber of regions is not large if the input dimension is not high, as suggested by Theorem 3.9. Addition-
ally, note that the check for a given unit is embarrassingly parallel, meaning the computation can be
accelerated. To demonstrate that the computation can be carried out in a reasonable time, we also
analyze the algorithm’s space-time complexity.

Space-time complexity of the algorithm
To start,we estimate complexities for somenumber of activation regionsR. Firstly, consider the
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Algorithm 3.2 Auxiliary Function That Checks if a Pre-Activation Feature Creates a New Region
1: functionNewRegionCheck(unit_features, feature, region)
2: objective = zeros
3: inequalites = region.inequalities
4: unit_features.weights = unit_features.weights× region.weights
5: unit_features.biases = unit_features.weights× region.biases
6: + unit_features.biases
7: for another_feature in unit_features \ feature do
8: inequalities.append(another_feature.weights - feature.weights× x
9: ≤ feature.bias - another_feature.bias)
10: if LinearProgramming.Solve(objective, inequalities) then
11: next_layer_function = region.next_layer_function
12: + [feature.weights, feature.bias]
13: return Region(inequalites, region.function, next_layer_function)
14: return None

space complexity. Sincewe store all activation regions, the space requirement growsasRmultiplied
by an activation region size. We store a region as a constant size function computed on it and as
a system of linear inequalities. The maximum number of inequalities is attained when each ofN
neurons adds a new system of inequalities to the region, whileK − 1 inequalities determine that
one pre-activation feature attains a maximum. Therefore, the space complexity of the algorithm is
O(RKN).

Now consider the time complexity. Sincewe traverse the network unit by unit, and for each pre-
activation featureofaunit andeachavailableactivation region,wesolvea linearprogrammingprob-
lem, the time complexity isO ofRKN times the time complexity of a linear programmingmethod.
We have used an interior point method that has a polynomial-time complexity of O( n3

lognL), see
Anstreicher (1999), where n is the dimension of the variables, which is the dimension of the net-
work input n0, andL is the number of bits used to represent the method input. The input is the set
of inequalities, and as we have just discussed, its size isO(KN). Combining everything and using
O(n3L) instead ofO( n3

lognL) for simplicity, we get that the time complexity of thewhole algorithm
isO(RK2N2n30).

To get complexities for the average case, assumeN ≥ n0. Then, based onTheorem3.9,R grows
asO((K3N)n0). Therefore, the space complexity isO(KN(K3N)n0) and the time complexity is
O(K2N2n30(K

3N)n0). Both space and time complexities grow exponentially with the input di-
mension but polynomially with the number of neurons and amaxout unit’s rank.
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3.J Parameter initialization

3.J.1 He initialization

We briefly recall the parameter initialization procedure for ReLU networks which is commonly re-
ferred to as “He initialization” (He et al., 2015). This follows themotivation of thework byXavier and
co-authors (Glorot and Bengio, 2010). To train deep networks, one would like to avoid vanishing or
explodinggradients. The approach formulates a sufficient condition for thenormsof the activations
across layers to not blow up or vanish. For ReLU networks, this leads to sampling the weights from
a distribution with standard deviation

√
2/nl.

3.J.2 He-like initialization formaxout (Maxout-He)

We follow the derivation fromGlorot and Bengio (2010) and He et al. (2015) but for the case of max-
out units. We note that a He-like initialization for maxouts was considered by Sun et al. (2018) but
only forK = 2. We focus on the forward pass and consider fully-connected layers. The idea is to
investigate the variance of the responses in each layer. We use the following notations. For a given
layer l with d units and nl inputs, a (pre-activation) response is yl = Wlxl + bl, where xl ∈ Rnl

is an input vector to the layer, Wl ∈ Rd×nl is a matrix, bl ∈ Rd is a vector of biases. We have
xl = ϕ(yl−1), where ϕ is the activation function.

We assume the elements inWl are independent and identically distributed (iid). We assume
that theelements inxl arealso iid. Weassume thatxl andWl are independentof eachother. Denote
yl,wl, and xl the random variables of each element in yl,Wl, and xl respectively. In the following
we assume that biases are zero. Then we have:

Var[yl] = nlVar[wl · xl].

If we assume further that wl has zero mean, then the variance of the product of independent vari-
ables gives us:

Var[yl] = nlVar[wl]E[x2l ]. (3.13)

We need to estimate E[x2l ]. For ReLU, E[x2l ] = 1
2Var[yl−1]. For maxout we get a different

result. Let K be the rank of a maxout unit. Then xl = ϕ(yl−1) = maxk∈[K]{yl−1,k}. The
yl−1,1, . . . , yl−1,K are independent and have the same distribution. We denote f(t) and F (t) the
pdf and cdf of this distribution. The cdf for xl = maxk∈[K]{yl−1,k} is, dropping the subscript l − 1
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of yl−1,k for simplicity of notation,

Pr
(
max
k∈[K]

{yk} < t

)
= Pr (y1, . . . , yK < t) =

K∏
k=1

Pr (yk < t) = (F (t))K .

In turn, the expectation of the square is

E
[
max
k∈[K]

{yk}2
]
=

∫
R
t2
d

dt

[
(F (t))K

]
dt = K

∫
R
t2 (F (t))K−1 f(t)dt.

Nowwe can apply this formula to discuss the cases of a uniform distribution on an interval and
a normal distribution. If we assume thatwl−1 has a symmetric distribution around zero, then yl−1

has zero mean and has a symmetric distribution around zero.

Uniform Distribution Assuming yl−1 has a uniform distribution on the interval [−a, a], we get
Var[yl−1] = a2/3, and

K = 2 : E[x2l ] =
a2

3
= Var[yl−1],

K = 3 : E[x2l ] =
2a2

5
=

6

5
Var[yl−1],

K = 4 : E[x2l ] =
7a2

15
=

7

5
Var[yl−1],

K = 5 : E[x2l ] =
11a2

21
=

11

7
Var[yl−1].

More generally,E[x2l ] = 4a2( K
K+2 − K

K+1 + K
4K ).

Normal Distribution Assuming yl−1 has a normal distributionN (0, σ2), the closed form solu-
tion is available for up toK = 4. We have:

K = 2 : E[x2l ] = Var[yl−1],

K = 3 : E[x2l ] =
√
3 + 2π

2π
Var[yl−1],

K = 4 : E[x2l ] =
√
3 + π

π
Var[yl−1],

K = 5 : E[x2l ] ≈ 1.80002Var[yl−1].

Inserting the expressions forE[x2l ] into (3.13),

Var[yl] = nlVar[wl]cVar[yl−1],
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Figure 3.10: Shown are normal (top) and uniform (bottom) input distributions, as well as the corre-
sponding response distributions for ReLU, maxout of rankK = 2, andmaxout of rankK = 5. The
expectation of the square response formaxouts of rankK > 2 depends not only on the variance but
also on the particular shape of the input distribution.

where c depends on the distribution and onK . Putting the results together for all layers,

Var[yL] = Var[y1]
L∏
l=2

cnlVar[wl].

A sufficient condition for this product not to increase or decrease exponentially inL is that, for each
layer, cnlVar[wl] = 1. This is achieved by setting the standard deviation (std) of wl as

√
1/cnl.

ForK = 2 this is
√
1/nl for both uniform and normal distribution. For a uniform distribution, we

obtain the condition Var[wl] =
1

nl(
1
4
− K

(K+2)(K+1)
)
.

Wenotice that for ReLU, the particular shape of the distribution of the (pre-activation) response
yl−1 does not impact the expected square of the activation xl. Indeed, as soon aswl is assumed to
be symmetric around zero, one obtains E[x2l ] =

1
2Var[yl−1]. In contrast, for maxout units of rank

K > 2, the particular shape of the distribution of yl−1 does affect the value ofE[x2l ]. This iswhywe
obtain different conditions on the standard deviation of the weight distributions depending on the
assumed responsedistribution. The situation is illustrated in Figure 3.10. Among thepossible distri-
butions that onemight assume for yl−1, a normal distribution appears most natural. Therefore, we
take the standard deviations obtained under this assumption as the ones defining the maxout-He
initialization procedure. The values of the std ofwl forK up to 5 for normal distributions are shown
in Table 3.1.
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3.J.3 Sphere initialization

If we initialize the pre-activation features of amaxout unit independently, thenwe expect the num-
ber of regions of the unit will be significantly smaller thanK , as discussed in Section 3.C. In view
of Proposition 3.20, the number of regions of a maxout unit with weights w1, . . . , wK ∈ Rn and
biases b1, . . . , bK ∈ R is equal to the number of upper vertices of the polytope conv{(wr, br) : r ∈
[K]}. Hence one way to have each rank-K maxout unit haveK linear regions over its input at ini-
tialization is to initialize the pre-activation feature parameters as points in the upper half-sphere
{(w, b) ∈ Rn+1 : ‖(w, b)‖ = 1, b > 0}. This can be done as follows. For each pre-activation
feature i = 1, . . . ,K :

1. Sample (wi, bi) from a Gaussian onRn+1.

2. Normalize (wi, bi)/‖(wi, bi)‖.

3. Replace bi with |bi|.

If desired, subtract a constant c from each of the biases b1, . . . , bK . For instance, one may choose
c so that the mean output of the maxout unit is approximately 0 for inputs from a Gaussian distri-
bution. We have used c = 1/

√
Knl in our implementation, and Gaussian had zero mean and unit

covariance.

3.J.4 Many regions initialization

We can initialize the parameters of a maxout layer so that the layer has the largest possible num-
ber of linear regions over its input space. A description of parameter choices maximizing the num-
ber of regions for a layer of maxout units has been given by Montúfar et al. (2022, Proposition 3.4).
The number of regions of a layer of maxout units corresponds to the number of upper vertices of
a Minkowski sum of polytopes. A construction maximizing the number of vertices of Minkowski
sums was presented earlier by Weibel (2012). The procedure is as follows. Let the layer have input
dimension n. For each unit j = 1, . . . ,m:

1. Sample a vector vj ∈ Rn from a distribution which has a density.

2. For eachpre-activation feature i = 1, . . . ,K set theweights andbias aswj,i = vj cos(πi/K)

and bj,i = sin(πi/K).

This construction ensures that each unit hasK linear regions separated byK − 1 parallel hyper-
planes, and the hyperplanes of different units are in general position. Then the number of regions
of the layer is the one indicated in the first item of Theorem 3.21.

If desired, one can add some noise to each of the above parameters (e.g. standard normal times
a small constant) in order to have a parameter distribution which has a density. If desired, one can
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also normalize the initialization by subtracting an appropriate constant (e.g. to achieve a zeromean
activation) and dividing by an appropriate standard deviation (e.g. to achieve that the activations
have a unitmean norm). Wewere sampling vj from aGaussian distributionwithmean zero and std
chosen according to maxout-He.

3.J.5 Steinwart-like initialization formaxout

Steinwart (2019) investigated initialization in ReLU networks. He suggested that having the non-
linear locus of different units evenly spaced over the input space at initialization could lead to faster
convergence of training, which he also supported with experiments on the datasets from the UCI
repository. We can formulate a version of this general idea for the case of maxout networks as fol-
lows.

1. Assume we have some generic initialization procedure for individual units, which gives
us weights w1, . . . , wK ∈ Rn and biases b1, . . . , bK ∈ R. The initialization procedure
could be for instance “Sphere”. Upon initialization, our unit is computing a function
x 7→ max{〈w1, x〉+ b1, . . . , 〈wK , x〉+ bK}with non-linear locus that we denoteL.

2. For each unit, sample a vector c uniformly from the cube [−1, 1]n. Alternatively, sample c as a
random convex combination of a random subset of the training data, so that c =

∑m
i=1 pixi,

where (p1, . . . , pm) is a random probability vector and x1, . . . , xm arem randomly selected
training input examples.

3. Now set the weights asw1, . . . , wK and the biases as b1 + 〈w1, c〉, . . . , bK + 〈wK , c〉. Now
ourunit is computing a functionx 7→ max{〈wk, x〉+bk+〈wk, c〉} = max{〈wk, x+c〉+bk}.
Hence the nonlinear becomesL− c.

3.K Experiment details and additional experiments

In this section, we provide details on the implementation and additional experimental results. All
the experiments were implemented in Python using PyTorch (Paszke et al., 2019), numpy (Harris
et al., 2020), scipy (Jones et al., 2001) andmpi4py (Dalcin et al., 2011), with plots created usingmat-
plotlib (Hunter, 2007). In the experiments concerning the network training, we used the MNIST
dataset (LeCun and Cortes, 2010). PyTorch, numpy, scipy and mpi4py are made available under
the BSD license, matplotlib under the PSF license, andMNIST dataset under the Creative Commons
Attribution-Share Alike 3.0 license. We conducted all experiments on a CPU cluster that uses Intel
Xeon IceLake-SP processors (Platinum8360Y)with 72 cores per node and 256GBRAM. Themost ex-
tensive experiments were usually running for 2-3 days on 32 nodes. The computer implementation
of the key functions is available on GitHub at https://github.com/hanna-tseran/maxout_
complexity.
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For theMNIST experiments, we use the Adam optimizer withmini-batches of size 128with the
learning rate0.001andthestandardAdamhyperparameters fromPyTorch (betasare0.9and0.999).
Counting at initialization was performed in the window [−50, 50]2, in the training experiments in
thewindow [−400, 400]2 defined on the slice, and images of the regions and the decision boundary
were obtained in the window [−50, 50]2 also defined on the slice. All results are averaged over 30
instances where applicable. The network architectures are specified in the individual experiments.
The parameter initialization procedures are implemented following the descriptions in Section 3.J.
For the experiments counting the number of activation regions and pieces in the decision boundary,
we use homemade implementations of the algorithms described in Section 3.I. Further below, we
present the details and additional results of the individual experiments.

Details on Figure 3.1 We consider a network with 2 input units, three layers of rank-3 maxout
units ofwidth3, anda single linear outputunit. Wefix threeparameter vectorsθ0, θ1, θ2 drawn from
a normal distribution over the parameter space and define a grid of parameter values θ(ξ1, ξ2) =

θ0+ξ1θ1+ξ2θ2with (ξ1, ξ2) taking 102400uniformlyspacedvalues in [−1, 1]2. Foreachof thesepa-
rameter values, we estimate the number of linear regions that the represented function has over the
square [−1, 1]2 in the input space. To this end, we evaluate the gradient of the function over 102400
uniformly spaced input points and take the number of distinct values as an estimate for the number
of linear regions. Then we plot the estimated number of linear regions as a function of (ξ1, ξ2). A
subset of 25 out of the evaluated functions is shown in Figure 3.11.

Comparison to the upper bound Figures 3.12 and 3.13 complement Figure 3.2. Figure 3.12 com-
pares the number of activation regions and linear pieces in the decision boundary to the formulas
bothwith andwithout the constants, while Figure 3.13 demonstrates the results for different values
ofK .

Effects of the depth and the number of units on the number of linear regions Results adding
more information to Figure 3.3 are in Figure 3.14. It shows that ReLUnetworks andmaxout networks
withK = 2have a similar number of activation regions that does not depend on the network depth
but rather on the total number of units. This figure also shows that maxout networks with ranks
K > 2 tend to have fewer regions as the depth increases, but the number of units remains constant,
and that the difference in the number of regions becomesmore apparent for larger ranks.

Effects of different initializations on training Figure 3.16 is a more detailed version of Figure
3.6. It shows how convergence speed changes for different network depths and different maxout
ranks given different initializations. The improvement frommaxout-He, sphere, and many regions
initializations compared to ReLU-He initialization becomes more noticeable with larger network
depth and larger maxout rank. We have also checked how the Steinwart initialization affects the
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convergence speed, but found no significant difference in this particular experiment. We used the
approach where c is taken as a convex combination of all training data points (weights p uniformly
at random from the probability simplex). The results are shown in Figure 3.15.

Effects of different initializations on the number of activation regions and pieces in the de-
cision boundary during training Figure 3.18 adds more information to Figure 3.5 and demon-
strates how the number of activation regions and linear pieces in the decision boundary changes for
different initializations during training on theMNIST dataset. We observe that the number of acti-
vation regions andpieces of the decisionboundary increase for all tested initializationprocedures as
training progresses. Nonetheless, the number remains much lower than the theoretical maximum.
Figure 3.17 illustrates how linear regions and the decision boundary evolve during training.

Figure 3.11: A few functions represented by amaxout network for different parameter values in a 2D
sliceof parameter space. For each function,weplot regionsof the input spacewithdifferent gradient
values using different colors.
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Formula withoutK and
constants

Formula withK without
constants

Full formula

(a) Number of activation regions for a network with ReLU-He normal initialization.

Formula withoutK and
constants

Formula withK without
constants

Full formula

(b) Number of linear pieces in the decision boundary for a network withmaxout-He normal initialization.

Figure 3.12: Comparison to the formulaswithandwithout the constants for thenumberof activation
regions and linear pieces in the decision boundary from Theorem 3.9 and Theorem 3.11 respectively.
Networks had 100 units andmaxout rankK = 2. The settings are similar to those in Figure 3.2.
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Formula withoutK and
constants

Formula withK without
constants

Full formula

(a)K = 3.

Formula withoutK and
constants

Formula withK without
constants

Full formula

(b)K = 5.

Figure 3.13: Comparison to the formula from Theorem 3.9 for maxout ranksK = 3 andK = 5.
The networkswere initializedwithmaxout-He normal initialization. We observe the increase in the
number of activation regions as the maxout rank increases, and for networks with higher maxout
rank deeper networks tend to have less regions than less deep networks with the same rank.
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(a) ReLU network with ReLU-He normal initialization.

(b) Maxout network withmaxout rankK = 2 and ReLU-He normal initialization.

(c) Maxout network withK = 3. Maxout-He normal initialization.

(d) Maxout network withK = 5. Maxout-He normal initialization.

Figure 3.14: Difference between the effects of depth and number of neurons on the number of acti-
vation regions. These plots are additional to Figure 3.3 and have similar settings. ReLU andmaxout
networks withK = 2 have a similar number of linear regions. For maxout rankK > 2 deeper
networks tend to have less regions than less deep networkswith the same rank. ForK = 3 the gaps
between different depths are smaller than forK = 5.
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Loss Accuracy

Figure 3.15: Effect of the Steinwart initialization approach on the convergence speed during training
on the MNIST dataset for a network with 200 units and 5 layers. Maxout rank wasK = 5. In this
experiment, for various initialization procedures, the addition or omission of a random shift of the
non-linear regions of different units led to similar training curves.
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Figure 3.16: Effect of the initialization on the convergence speed during training on the MNIST
dataset of networkswith 200 units depending on the network depth and themaxout rank. Maxout-
He, sphere, and many regions initializations behave similarly, and the improvement in the conver-
gence speed becomesmore noticeable for larger network depth andmaxout rank.
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Before training 20 epochs 40 epochs 60 epochs 80 epochs 100 epochs

(a) Linear regions.

Before training 20 epochs 40 epochs 60 epochs 80 epochs 100 epochs

(b) Decision boundary.

Figure 3.17: Evolution of the linear regions and the decision boundary during training on MNIST in
a 2D slice determined by three random input points from the dataset. The network had 3 layers, a
total of 100maxout units of rankK = 2, and was initialized with the maxout-He initialization.
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Linear regions Decision boundary Loss

(a) ReLU network with the ReLU-He normal initialization.

(b) Maxout network with the ReLU-He normal initialization.

(c) Maxout network with themaxout-He normal initialization.

(d) Maxout network with the sphere initialization.

(e) Maxout network with themany regions initialization.

Figure 3.18: Change in the number of linear regions and the decision boundary pieces during 100
training epochs given different initializations. Networks had 100 neurons and formaxout networks
K = 2. Both thenumberof linear regionsand linearpiecesof thedecisionboundary increaseduring
training for all initializations but remainmuch smaller than the theoreticalmaximum. The settings
were the same as in Figure 3.5.
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Expected gradients of maxout networks
and consequences to parameter
initialization

4.1 Introduction

We study the gradients of maxout networks and derive a rigorous parameter initialization strat-
egy as well as several implications for stability and expressivity. Maxout networks were proposed
by Goodfellow et al. (2013) as an alternative to ReLU networks with the potential to improve issues
withdyingneurons and attain bettermodel averagingwhenusedwithDropout (Hinton et al., 2012).
Dropout is used in transformer architectures (Vaswani et al., 2017), andmaximumaggregation func-
tions are used in Graph Neural Networks (Hamilton, 2020). Therefore, we believe that developing
the theory and implementation aspects of maxout networks can serve as an interesting platform
for architecture design. We compute bounds on the moments of the gradients of maxout networks
depending on the parameter distribution and the network architecture. The analysis is based on
the input-output Jacobian. We discover that, in contrast to ReLU networks, when initialized with
a zero-mean Gaussian distribution, the distribution of the input-output Jacobian of a maxout net-
work depends on the network input, whichmay lead to unstable gradients and training difficulties.
Nonetheless, we can obtain a rigorous parameter initialization recommendation forwide networks.
The analysis of gradients also allows us to refine previous bounds on the expected number of linear
regions ofmaxout networks at initialization and derive new results on the length distortion and the
NTK.

Maxout networks A rank-K maxout unit, introduced by Goodfellow et al. (2013), computes the
maximum ofK real-valued parametric affine functions. Concretely, a rank-K maxout unit with n
inputs implements a function Rn → R; x 7→ maxk∈[K]{〈Wk,x〉 + bk}, whereWk ∈ Rn and
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bk ∈ R, k ∈ [K] := {1, . . . ,K}, are trainable weights and biases. TheK arguments of the max-
imum are called the pre-activation features of the maxout unit. This may be regarded as a multi-
argument generalization of a ReLU, which computes the maximum of a real-valued affine function
and zero. Goodfellow et al. (2013) demonstrated that maxout networks could perform better than
ReLU networks under similar circumstances. Additionally, maxout networks have been shown to
be useful for combating catastrophic forgetting in neural networks (Goodfellow et al., 2015). On the
other hand, Castaneda et al. (2019) evaluated the performance of maxout networks in a big data
setting and observed that increasing thewidth of ReLUnetworks ismore effective in improving per-
formance than replacing ReLUs with maxout units and that ReLU networks converge faster than
maxout networks. We observe that proper initialization strategies for maxout networks have not
been studied in the same level of detail as for ReLUnetworks and that thismight resolve some of the
problems encountered in previous maxout network applications.

Parameter initialization The vanishing and exploding gradient problem has been known since
the work of Hochreiter (1991). It makes choosing an appropriate learning rate harder and slows
training (Sun, 2019). Common approaches to address this difficulty include the choice of specific
architectures, e.g. LSTMs (Hochreiter, 1991) or ResNets (He et al., 2016), and normalizationmethods
such as batch normalization (Ioffe and Szegedy, 2015) or explicit control of the gradient magnitude
with gradient clipping (Pascanu et al., 2013). We will focus on approaches based on parameter ini-
tialization that control the activation length and parameter gradients (LeCun et al., 2012; Glorot and
Bengio, 2010;He et al., 2015;GurbuzbalabanandHu, 2021; Zhanget al., 2019; Bachlechner et al., 2021).
He et al. (2015) studied forward and backward passes to obtain initialization recommendations for
ReLU. Amore rigorous analysis of the gradients was performed by Hanin and Rolnick (2018); Hanin
(2018), who also considered higher-order moments and derived recommendations on the network
architecture. Sun et al. (2018) derived a corresponding strategy for rankK = 2maxout networks.
For higher maxout ranks, Tseran and Montúfar (2021) considered balancing the forward pass, as-
sumingGaussian or uniformdistribution on the pre-activation features of each layer. However, this
assumption is not fully justified. We will analyze maxout network gradients, including the higher
ordermoments, and give a rigorous justification for the initialization suggested by Tseran andMon-
túfar (2021).

Expected number of linear regions Neural networks with piecewise linear activation functions
subdivide their input space into linear regions, i.e., regions over which the computed function is
(affine) linear. The number of linear regions serves as a complexity measure to differentiate net-
work architectures (Pascanu et al., 2014; Montufar et al., 2014; Telgarsky, 2015, 2016). The first re-
sults on the expected number of linear regions were obtained by Hanin and Rolnick (2019a,b) for
ReLU networks, showing that it can be much smaller than the maximum possible number. Tseran
andMontúfar (2021) obtained corresponding results formaxoutnetworks. An important factor con-
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trolling the bounds in theseworks is a constant depending on the gradient of the neuron activations
with respect to the network input. By studying the input-output Jacobian of maxout networks, we
obtain a refined bound for this constant and, consequently, the expected number of linear regions.

Expected curve distortion Another complexity measure is the distortion of the length of an in-
put curve as it passes through a network. Poole et al. (2016) studied the propagation of Riemannian
curvature throughwide neural networks using amean-field approach, and later, a related notion of
“trajectory length” was considered by Raghu et al. (2017). It was demonstrated that thesemeasures
can grow exponentiallywith the network depth, whichwas linked to the ability of deep networks to
“disentangle” complex representations. Based on these notions, Murray et al. (2022) studies how to
avoid rapid convergence of pairwise input correlations, vanishing and exploding gradients. How-
ever, Hanin et al. (2021) proved that for a ReLUnetworkwithHe initialization the length of the curve
does not grow with the depth and even shrinks slightly. We establish similar results for maxout
networks.

NTK It is known that the neural tangent kernel (NTK) of a finite network can be approximated by
its expectation (Jacot et al., 2018). However, for ReLUnetworksHanin andNica (2020a) showed that
if both the depth andwidth tend to infinity, the NTK does not converge to a constant in probability.
By studying the expectation of the gradients, we show that similarly to ReLU, the NTK of maxout
networks does not converge to a constant when both width and depth are sent to infinity.

Contributions Our contributions can be summarized as follows.

• For expected gradients, we derive stochastic order bounds for the directional derivative of the
input-outputmap of a deep fully-connectedmaxout network (Theorem 4.1) aswell as bounds for
the moments (Corollary 4.2). Additionally, we derive equality in distribution for the directional
derivatives (Theorem 4.3), based on which we also discuss the moments (Remark 4.4) in wide
networks. We further derive the moments of the activation length of a fully-connected maxout
network (Corollary 4.5).

• We rigorously derive parameter initialization guidelines for wide maxout networks prevent-
ing vanishing and exploding gradients and formulate architecture recommendations. We exper-
imentally demonstrate that they make it possible to train standard-width deep fully-connected
and convolutionalmaxout networks using simple procedures (such as SGDwithmomentum and
Adam), yielding higher accuracy than other initializations or ReLU networks on image classifica-
tion tasks.

• We derive several implications refining previous bounds on the expected number of linear re-
gions (Corollary 4.6), and new results on length distortion (Corollary 4.7) and the NTK (Corol-
lary 4.9).
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Maxout, rankK = 5 ReLU
1 hidden layer 3 hidden layers 5 hidden layers 10 hidden layers 5 hidden layers

Figure 4.1: Expectation of the directional derivative of the input-output map E[‖JN (x)u‖2] for
width-2 fully-connected networks with inputs in R2. For maxout networks, this expectation de-
pends on the input, while for ReLU networks, it does not. Input points x were generated as a grid
of 100 × 100 points in [−103, 103]2, and u was a fixed vector sampled from the unit sphere. The
expectation was estimated based on 10,000 initializations with weights and biases sampled from
N(0, 1).

4.2 Preliminaries

Architecture We consider feedforward fully-connected maxout neural networks with n0 inputs,
Lhidden layers ofwidthsn1, . . . , nL−1, anda linear output layer,which implement functionsof the
formN = ψ◦ϕL−1◦· · ·◦ϕ1. The l-thhidden layer is a functionϕl : Rnl−1 → Rnl with components
i ∈ [nl] := {1, . . . , nl} given by the maximum ofK ≥ 2 trainable affine functions ϕl,i : Rnl−1 →
R; x(l−1) 7→ maxk∈[K]{W

(l)
i,kx

(l−1) + b
(l)
i,k}, whereW (l)

i,k ∈ Rnl−1 , bi,k ∈ R. Here x(l−1) ∈ Rnl−1

denotes the output of the (l − 1)th layer and x(0) := x. We will write x(l)
i,k = W

(l)
i,kx

(l−1) + b
(l)
i,k

to denote the kth pre-activation of the ith neuron in the lth layer. Finally ψ : RnL−1 → RnL is a
linear output layer. We will writeΘ = {W , b} for the parameters. Unless stated otherwise, we
assume that for each layer, the weights and biases are initialized as i.i.d. samples from a Gaussian
distribution with mean 0 and variance c/nl−1, where c is a positive constant. For the linear output
layer, the variance is set as 1/nL−1. We shall study appropriate choices of c. We will use ‖ · ‖ to
denote the ℓ2 vector norm. We recall that a real-valued random variable X is said to be smaller
than Y in the stochastic order, denoted byX ≤st Y , if Pr(X > x) ≤ Pr(Y > x) for all x ∈ R. In
Section4.A,we list all the variables and symbolswith their definitions, and in Section4.B,we review
basic notions about maxout networks and random variables that we will use in our results.

Input-output Jacobian and activation length We are concerned with the gradients of the out-
puts with respect to the inputs,∇Ni(x) = ∇xNi, andwith respect to the parameters,∇Ni(Θ) =

∇ΘNi. In our notation, the argument indicates the variables with respect to which we are tak-
ing the derivatives. To study these gradients, we consider the input-output Jacobian JN (x) =

[∇N1(x), . . . ,∇NnL(x)]
T . To see the connection to the gradient with respect to the network pa-

rameters, consider any loss functionL : RnL → R. A short calculation shows that, for a fixed input
x ∈ Rn0 , the derivative of the loss with respect to one of the weightsW (l)

i,k′,j of a maxout unit is
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〈
∇L(N (x)) ,JN (x

(l)
i )
〉
x
(l−1)
j if k′ = argmaxk{x

(l)
i,k} and zero otherwise, i.e.

∂L(x)
∂W

(l)
i,k′,j

= C(x,W ) ‖JN

(
x(l)
)
u‖x(l−1)

j , (4.1)

where C(x,W ) := ‖JN (x
(l)
i )‖−1〈∇L(N (x)),JN (x

(l)
i )〉 and u = ei ∈ Rnl . A similar decom-

position of the derivative was used by Hanin (2018); Hanin and Rolnick (2018) for ReLU networks.
By (4.1) the fluctuation of the gradient norm around its mean is captured by the joint distribution
of the squared norm of the directional derivative ‖JN (x)u‖2 and the normalized activation length
A(l) = ‖x(l)‖2/nl. We also observe that ‖JN (x)u‖2 is related to the singular values of the input-
output Jacobian, which is of interest since a spectrum concentrated around one at initialization can
speed up training (Saxe et al., 2014; Pennington et al., 2017, 2018): First, the sumof singular values is
tr(JN (x)T JN (x)) =

∑nL
i=1〈JN (x)T JN (x)ui,ui〉 =

∑nL
i=1 ‖JN (x)ui‖2, where the vectors

ui form an orthonormal basis. Second, using the Stieltjes transform, one can show that singular
values of the Jacobian depend on the evenmoments of the entries of JN (Hanin, 2018, Section 3.1).

4.3 Results

4.3.1 Bounds on the input-output Jacobian

Theorem 4.1 (Bounds on ‖JN (x)u‖2). Consider a maxout network with the settings of Section 4.2.
Assume that the biases are independent of the weights but otherwise initialized using any approach. Let
u ∈ Rn0 be a fixed unit vector. Then, almost surely, with respect to the parameter initialization, for any
input into the networkx ∈ Rn0 , the following stochastic order bounds hold:

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

ξl,i(χ
2
1,K) ≤st ‖JN (x)u‖2 ≤st

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

Ξl,i(χ
2
1,K),

where ξl,i(χ2
1,K) andΞl,i(χ

2
1,K) are respectively the smallest and largest order statistic in a sample of size

K of chi-squared random variables with 1 degree of freedom, independent of each other and of the vectorsu
andx.

The proof is in Section 4.C. It is based on appropriate modifications to the ReLU discus-
sion of Hanin and Nica (2020b); Hanin et al. (2021) and proceeds by writing the Jacobian norm
as the product of the layer norms and bounding them with mink∈[K]{〈W

(l)
i,k ,u

(l−1)〉2} and

maxk∈[K]{〈W
(l)
i,k ,u

(l−1)〉2}. Since the product of a Gaussian vector with a unit vector is always
Gaussian, the lower and upper bounds are distributed as the smallest and largest order statistics in
a sample of sizeK of chi-squared random variables with 1 degree of freedom. In contrast to ReLU
networks, we found that for maxout networks, it is not clear how to obtain equality in distribution
involving only independent random variables because of the dependency of the distribution of
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Fully-connected network
Width= 2 Width= 50

Convolutional network
Width= 2 Width= 50

Figure 4.2: Expected value and interquartile range of the squared gradients n0(∂N/∂Wi,k′,j)
2 as

a function of depth. Weights are sampled from N(0, c/fan-in) in fully-connected networks and
N(0, c/(k2 · fan-in)), where k is the kernel size, in CNNs. Biases are zero, and the maxout rankK
is 5. The gradient is stable in wide fully-connected and convolutional networks with c = 0.55555
(red line), the value suggested in Section 4.4. The dark and light blue lines represent the bounds
from Corollary 4.2, and equal 1/L = 0.36 and 1/S = 12. The yellow line corresponds to the ReLU-
He initialization. We compute the mean and quartiles from 100 network initializations and a fixed
input. The same color lines that are close to each other correspond to 3 different unit-normnetwork
inputs.

‖JN (x)u‖2 on the network input x and the direction vector u (see Figure 4.1). We discuss this in
more detail in Section 4.3.2.

Corollary 4.2 (Bounds on themoments of ‖JN (x)u‖2). Consider amaxout network with the settings
of Section 4.2. Assume that the biases are independent of the weights but otherwise initialized using any
approach. Letu ∈ Rn0 be a fixed unit vector andx ∈ Rn0 be any input into the network, Then

(i)
nL
n0

(cS)L−1 ≤ E[‖JN (x)u‖2] ≤ nL
n0

(cL)L−1,

(ii) Var
[
‖JN (x)u‖2

]
≤
(
nL
n0

)2

c2(L−1)

(
K2(L−1) exp

{
4

(
L−1∑
l=1

1

nlK
+

1

nL

)}
− S2(L−1)

)
,
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(iii) E
[
‖JN (x)u‖2t

]
≤
(
nL
n0

)t

(cK)t(L−1) exp

{
t2

(
L−1∑
l=1

1

nlK
+

1

nL

)}
, t ∈ N,

where the expectation is taken with respect to the distribution of the network weights. The constantsS andL
depend onK anddenote themeans of the smallest and the largest order statistic in a sample ofK chi-squared
random variables. ForK = 2, . . . , 10, S ∈ [0.02, 0.4] andL ∈ [1.6, 4]. See Table 4.9 in Section 4.D for
the exact values.

Notice that for t ≥ 2, the tth moments of the input-output Jacobian depend on the architec-
ture of the network, but the mean does not (Corollary 4.2), similarly to their behavior in ReLU net-
works Hanin (2018). We also observe that the upper bound on the tth moments can grow expo-
nentially with the network depth depending on the maxout rank. However, the upper bound on
themoments can be tightened provided corresponding bounds for the largest order statistics of the
chi-squared distribution.

4.3.2 Distribution of the input-output Jacobian

Here we present the equality in distribution for the input-output Jacobian. It contains dependent
variables for the individual layers and thus cannotbe readilyused toobtainboundson themoments,
but it is particularly helpful for studying the behavior of widemaxout networks.

Theorem 4.3 (Equality in distribution for ‖JN (x)u‖2). Consider a maxout network with the settings
of Section 4.2. Let u ∈ Rn0 be a fixed unit vector and x ∈ Rn0 ,x 6= 0 be any input into the network.
Then, almost surely, with respect to the parameter initialization, ‖JN (x)u‖2 equals in distribution

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

(
vi

√
1− cos2 γx(l−1),u(l−1) + Ξl,i(N(0, 1),K) cos γx(l−1),u(l−1)

)2
,

where vi and Ξl,i(N(0, 1),K) are independent, vi ∼ N(0, 1), Ξl,i(N(0, 1),K) is the largest
order statistic in a sample of K standard Gaussian random variables. Here γx(l),u(l) denotes the
angle between x(l) := (x

(l)
1 , . . . ,x

(l)
nl , 1) and u(l) := (u

(l)
1 , . . . ,u

(l)
nl , 0) in Rnl+1, where

u(l) = W
(l)
u(l−1)/‖W (l)

u(l−1)‖ when W (l)
u(l−1) 6= 0 and 0 otherwise, and u(0) = u. The

matricesW (l) consist of rowsW (l)
i =W

(l)
i,k′ ∈ Rnl−1 , where k′ = argmaxk∈[K]{W

(l)
i,kx

(l−1) + b
(l)
i,k}.

This statement is proved in Section 4.E. The main strategy is to construct an orthonormal basis
B = (b1, . . . , bnl

), where b1 := x(l)/‖x(l)‖, which allows us to express the layer gradient depend-
ing on the angle between x(l) and u(l).

Remark 4.4 (Wide networks). By Theorem 4.3, in a maxout network the distribution of
‖JN (x)u‖2 depends on the cos γx(l−1),u(l−1) , which changes as the network gets wider or deeper.
Since independent and isotropic random vectors in high-dimensional spaces tend to be almost
orthogonal, we expect that the cosine will be close to zero for the earlier layers of wide networks,
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and individual units will behave similarly to squared standard Gaussians. In wide and deep
networks, if the network parameters are sampled fromN(0, c/nl−1), c = 1/M, andK ≥ 3, we
expect that | cos γx(l),u(l) | ≈ 1 for the later layers of deep networks and individual units will behave
more as the squared largest order statistics. Here M is the second moment of the largest order
statistic in a sample of sizeK of standard Gaussian random variables. Based on this, for deep and
wide networks, we can expect that

E[‖JN (x)u‖2] ≈ nL
n0

(cM)L−1 =
nL
n0
. (4.2)

This intuition is discussed in more detail in Section 4.E. According to (4.2), we expect that the ex-
pected gradientmagnitudewill be stablewith depthwhen an appropriate initialization is used. See
Figure 4.2 for a numerical evaluation of the effects of the width and depth on the gradients.

4.3.3 Activation length

To have a full picture of the derivatives in (4.1), we consider the activation length. The full version
and proof of Corollary 4.5 are in Section 4.F. The proof is based on Theorem 4.3, replacing u with
x/‖x‖.

Corollary 4.5 (Moments of the normalized activation length). Consider a maxout network with the
settings of Section 4.2. Letx ∈ Rn0 be any input into the network. Then, for themoments of the normalized
activation lengthA(l′) of the l′th layer we have

Mean: E
[
A(l′)

]
= ‖x(0)‖2 1

n0
(cM)l

′
+

l′∑
j=2

(
1

nj−1
(cM)l

′−j+1

)
,

Moments of order t ≥ 2: G1

(
(cM)tl

′
)
≤ E

[(
A(l′)

)t]
≤ G2

(
(cK)tl

′
exp

{
l′∑

l=1

t2

nlK

})
.

The expectation is taken with respect to the distribution of the network weights and biases, andM is
a constant depending on K that can be computed approximately, see Table 4.9 for the values for K =

2, . . . , 10. See Section 4.F for the variance bounds and details on functionsG1, G2.

We could obtain an exact expression for the mean activation length for a finitely wide maxout
network since its distribution only depends on the norm of the input, while this is not the case for
the input-output Jacobian (Sections 4.3.1 and 4.3.2). We observe that the variance and the tth mo-
ments, t ≥ 2, have an exponential dependence on the network architecture, including the maxout
rank, whereas the mean does not, similarly to the input-output Jacobian (Corollary 4.2). Such be-
havior also occurs for ReLU networks (Hanin and Rolnick, 2018). See Figure 4.9 in Section 4.F for an
evaluation of the result.
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Table 4.1: Recommended values for the constant c for different maxout ranksK based on Section
4.4.

K 2 3 4 5 6 7 8 9 10

c 1 0.78391 0.64461 0.55555 0.49462 0.45039 0.41675 0.39023 0.36872

4.4 Implications to initialization and network architecture

We now aim to find initialization approaches and architectures that can avoid exploding and van-
ishing gradients. We take the annealed exploding and vanishing gradients definition from Hanin
(2018) as a starting point for such investigation for maxout networks. Formally, we require

E

 ∂L(x)
∂W

(l)
i,k′,j

2 = Θ(1), Var

 ∂L(x)
∂W

(l)
i,k′,j

2 = Θ(1),

sup
l≥1

E

 ∂L(x)
∂W

(l)
i,k′,j

2t <∞, ∀t ≥ 3,

where the expectation is with respect to theweights and biases. Based on (4.1) these conditions can
be attained by ensuring that similar conditions hold for ‖JN (x)u‖2 andA(l).

Initialization recommendations Based on Corollary 4.2, the mean of ‖JN (x)u‖2 can be sta-
bilized for some c ∈ [1/L, 1/S]. However, Theorem 4.3 shows that ‖JN (x)u‖2 depends on the
input into the network. Hence, we expect that there is no value of c stabilizing input-output Jaco-
bian for every input simultaneously. Nevertheless, based on Remark 4.4, for wide and deepmaxout
networks, E[‖JN (x)u‖2] ≈ nL/n0 if c = 1/M, and the mean becomes stable. While Remark 4.4
does not include maxout rankK = 2, the same recommendation can be obtained for it using the
approach fromHe et al. (2015), see Sun et al. (2018). Moreover, according to Corollary 4.5, the mean
of the normalized activation length remains stable for different network depths if c = 1/M. Hence,
we recommend c = 1/M as an appropriate value for initialization. See Table 4.1 for the numerical
value of c forK = 2, . . . , 10. We call this type of initialization, when the parameters are sampled
from N(0, c/fan-in), c = 1/M, “maxout initialization”. We note that this matches the previous
recommendation from Tseran andMontúfar (2021), which we now derived rigorously.

Architecture recommendations In Corollaries 4.2 and 4.5 the upper bound on themoments t ≥
2 of ‖JN (x)u‖2 and A(l) = ‖x(l)‖2/nl can grow exponentially with the depth depending on
the values of (cK)L and

∑L−1
l=1 1/(nlK). Hence, we recommend choosing the widths such that∑L−1

l=1 1/(nlK) ≤ 1, which holds, e.g., if nl ≥ L/K, ∀l = 1, . . . , L − 1, and choosing a moderate
value of the maxout rankK . However, the upper bound can still tend to infinity for the high-order
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moments. From Remark 4.4, it follows that forK ≥ 3 to have a stable initialization independent
of the network input, a maxout network has to be deep and wide. Experimentally, we observe that
for 100-neuron wide networks withK = 3, the absolute value of the cosine that determines the
initialization stability converges to 1 at around 60 layers, and forK = 4, 5, at around 30 layers. See
Figure 4.6 in Section 4.E. To sumup, we recommendworkingwith deep andwidemaxout networks
with widths satisfying

∑L−1
l=1 1/(nlK) ≤ 1, and choosing the maxout-rank not too small nor too

large, e.g.,K = 5.

4.5 Implications to expressivity and NTK

WithTheorems4.1 and4.3 inplace,wecannowobtainmaxoutversionsof the several typesof results
that previously have been derived only for ReLU networks.

4.5.1 Expected number of linear regions of maxout networks

For apiece-wise linear functionf : Rn0 → R, a linear region is definedas amaximal connected sub-
set ofRn0 on which f has a constant gradient. Tseran and Montúfar (2021) and Hanin and Rolnick
(2019b) established upper bounds on the expected number of linear regions of maxout and ReLU
networks, respectively. One of the key factors controlling these bounds isCgrad, which is any upper
bound on (supx∈Rn0 E[‖∇ζz,k(x)‖t])1/t, for any t ∈ N and z = 1, . . . , N . Here ζz,k is the kth
pre-activation feature of the zth unit in the network,N is the total number of units, and the gradi-
ent is with respect to the network input. Using Corollary 4.2, we obtain a value forCgrad for maxout
networks, which remained an open problem in the work of Tseran and Montúfar (2021). The proof
of Corollary 4.6 and the resulting refined bound on the expected number of linear regions are in
Section 4.G.

Corollary 4.6 (Value for Cgrad). Consider a maxout network with the settings of Section 4.2. Assume
that the biases are independent of the weights but otherwise initialized using any approach. Consider the
pre-activation feature ζz,k of a unit z = 1, . . . , N . Then, for any t ∈ N,

(
sup

x∈Rn0

E
[
‖∇ζz,k(x)‖t

]) 1
t

≤ n
− 1

2
0 max

{
1, (cK)

L−1
2

}
exp

{
t

2

(
L−1∑
l=1

1

nlK
+ 1

)}
.

ThevalueofCgrad given inCorollary4.6growsasO((cK)L−1 exp{t
∑L−1

l=1 1/(nlK)}). Thefirst
factor grows exponentially with the network depth if cK > 1. This is the case when the network
is initialized as in Section 4.4. However, sinceK is usually a small constant and c ≤ 1, cK ≥ 1

is a small constant. The second factor grows exponentially with the depth if
∑L−1

l=1 1/(nlK) > 1.
Hence, the exponential growth can be avoided if nl ≥ (L− 1)/K, ∀l = 1, . . . , L− 1.
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4.5.2 Expected curve length distortion

LetM be a smooth 1-dimensional curve in Rn0 of length len(M) and N (M) ⊆ RnL the image
of M under the map x 7→ N (x). We are interested in the length distortion of M , defined as
len(N (M))/len(M). Using the results from Section 4.3.1, observing that the input-output Jaco-
bian of maxout networks is well defined almost everywhere, and following Hanin et al. (2021), we
obtain the following corollary. The proof is in Section 4.H.

Corollary 4.7 (Expected curve length distortion). Consider a maxout network with the settings of Sec-
tion 4.2. Assume that the biases are independent of theweights but otherwise initialized using any approach.
LetM be a smooth 1-dimensional curve of unit length inRn0 . Then, the following upper bounds on themo-
ments of len(N (M)) hold:

E [len(N (M))] ≤
(
nL
n0

) 1
2

(cL)
L−1
2 ,

Var [len(N (M))] ≤ nL
n0

(cL)L−1,

E
[
len(N (M))t

]
≤
(
nL
n0

) t
2

(cK)
t(L−1)

2 exp

{
t2

2

(
L−1∑
l=1

1

nlK
+

1

nL

)}
,

whereL is a constant depending onK , see Table 4.9 in Section 4.D for values forK = 2, . . . , 10.

Remark 4.8 (Expected curve length distortion inwidemaxout networks). If the network is initial-
ized according to Section 4.4, using Remark 4.4 and repeating the steps of the proof of Corollary 4.7,
we getE [len(N (M))] ≲ (nL/n0)

1/2 and Var [len(N (M))] ≈ nL/n0.

Hence, similarly to ReLU networks, wide maxout networks, if initialized to keep the gradients
stable, have low expected curve length distortion at initialization. However, we cannot conclude
whether the curve length shrinks. For narrow networks, the upper bound does not exclude the pos-
sibility that the expected distortion grows exponentially with the network depth, depending on the
initialization.

4.5.3 On-diagonal NTK

We denote the on-diagonal NTKwithKN (x,x) =
∑

i(∂N (x)/∂θi)
2. In Section 4.I we show:

Corollary 4.9 (On-diagonal NTK). Consider a maxout network with the settings of Section 4.2. Assume
that nL = 1 and that the biases are initialized to zero and are not trained. Assume that S ≤ c ≤ L, where
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Table 4.2: Accuracy on the test set for networks trained using SGD with Nesterov momentum. Ob-
serve that maxout networks initialized with the maxout or max-pooling initialization perform sig-
nificantlybetter than theones initializedwithother initializationsandbetter or comparably toReLU
networks.

MAXOUT RELU

Small value Max-pooling init Maxout init Naive He init
VALUEOF c Section 4.6 (Ours) Section 4.4 (Ours) ReLU He

0.1 0.55& 0.27 0.55555 2 2

FULLY-CONNECTED

MNIST 11.35±0.00 — 97.8±0.15 53.22±24.08 97.43±0.06

Iris 30.00±0.00 — 91.67±3.73 82.5±4.93 91.67±3.73

CONVOLUTIONAL

MNIST 11.35±0.00 99.58±0.03 99.59±0.04 98.02±0.21 99.49±0.04

CIFAR-10 10.00±0.00 91.7±0.17 91.21±0.13 44.84±0.69 90.12±0.25

CIFAR-100 1.00±0.00 65.33±0.27 65.39±0.39 12.02±0.8 59.59±0.82

Fashion
MNIST

10.00±0.00 93.55±0.13 93.49±0.13 81.56±0.15 93.28±0.11

SVHN 19.59±0.00 97.3±0.04 97.78±0.02 50.97±1.71 96.74±0.03

the constants S,L are as specified in Table 4.9. Then,

‖x(0)‖2 (cS)
L−2

n0
P ≤ E[KN (x,x)] ≤ ‖x(0)‖2 (cL)

L−2ML−1

n0
P,

E[KN (x,x)2] ≤ 2PPW (cK)2(L−2) ‖x(0)‖4

n20
exp


L−1∑
j=1

4

njK
+ 4

 ,

whereP =
∑L−1

l=0 nl,PW =
∑L

l=0 nlnl−1, andM is as specified in Table 4.9.

By Corollary 4.9, E[KN (x,x)2]/(E[KN (x,x)])2 is in O((PW /P )CL exp{
∑L

l=1 1/(nlK)}),
where C depends on L,M and K . Hence, if widths n1, . . . , nL−1 and depth L tend to infinity,
this upper bound does not converge to a constant, suggesting that the NTK might not converge to
a constant in probability. This is in line with previous results for ReLU networks by Hanin and Nica
(2020a).

4.6 Experiments

We check how the initialization proposed in Section 4.4 affects the network training. This initial-
ization was first proposed heuristically by Tseran and Montúfar (2021), where it was tested for
10-layer fully-connected networks with an MNIST experiment. We consider both fully-connected
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Table 4.3: Accuracy on the test set for the networks trained with Adam. Observe that maxout net-
works initialized with the maxout or max-pooling initialization perform better or comparably to
ReLU networks, while maxout networks initialized with ReLU-He converge slower and perform
worse.

MAXOUT RELU

Max-pooling init Maxout init Naive He init
VALUE OF c Section 4.6 (Ours) Section 4.4 (Ours) ReLU He

0.55& 0.27 0.55555 2 2

FULLY-CONNECTED

MNIST
1/10 epochs — 97.56±0.18 97.40±0.30 96.72±0.64

2/10 epochs — 98.10±0.09 97.97±0.12 97.54±0.16

All epochs — 98.12±0.10 98.13±0.09 97.37±0.08

CONVOLUTIONAL

MNIST
1/10 epochs 99.06±0.15 98.59±0.58 98.54±0.52 99.14±0.32

2/10 epochs 99.39±0.13 98.51±0.25 99.17±0.13 99.41±0.05

All epochs 99.53±0.04 99.47±0.07 99.47±0.04 99.45±0.06

Fashion
MNIST

1/10 epochs 92.04±0.29 92.35±0.12 87.95±0.33 92.45±0.41

2/10 epochs 92.61±0.22 92.85±0.21 90.35±0.38 92.71±0.25

All epochs 93.57±0.17 93.45±0.10 91.63±0.36 92.98±0.13

CIFAR-10
1/10 epochs 88.25±0.49 87.31±0.51 74.37±0.37 85.95±0.30

2/10 epochs 88.79±0.72 87.96±0.75 81.94±0.34 87.12±0.23

All epochs 91.33±0.31 91.06±0.22 85.23±0.20 87.70±0.10

CIFAR-100
1/10 epochs 50.30±3.34 53.43±1.08 19.22±0.51 50.39±0.91

2/10 epochs 57.54±1.64 57.65±0.75 33.21±0.51 51.34±0.51

All epochs 65.33±1.26 61.96±0.58 37.58±0.23 52.95±0.30

and convolutional neural networks and run experiments for MNIST (LeCun and Cortes, 2010), Iris
(Fisher, 1936), FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-10 andCIFAR-100
(Krizhevsky et al., 2009). Fully connected networks have 21 layers and CNNs have a VGG-19-like
architecture (Simonyan and Zisserman, 2015) with 20 or 16 layers depending on the input size, all
with maxout rank 5. Weights are sampled from N(0, c/fan-in) in fully-connected networks and
N(0, c/(k2 · fan-in)) in CNNs of kernel size k. The biases are initialized to zero. We report the
mean and std of 4 runs.

We use plain deep networks without any kind of modifications or pre-training. We do not use
normalization techniques, such as batch normalization (Ioffe and Szegedy, 2015), since this would
obscure the effects of the initialization. Because of this, our results are not necessarily state-of-the-
art. More details on the experiments are given in Section 4.J, and the implementation ismade avail-
able at https://github.com/hanna-tseran/maxout_expected_gradients.
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Max-pooling initialization To account for the maximum in max-pooling layers, a maxout layer
appearing after a max-pooling layer is initialized as if its maxout rank wasK × m2, wherem2 is
the max-pooling window size. For example, we usedK = 5 andm2 = 4, resulting in c = 0.26573

for such maxout layers. All other layers are initialized according to Section 4.4. We observe that
max-pooling initialization often leads to slightly higher accuracy.

Results for SGDwithmomentum Table 4.2 reports test accuracy for networks trainedusing SGD
with Nesterov momentum. We compare ReLU and maxout networks with different initializations:
maxout,max-pooling, small value c = 0.1, andHe c = 2. Weobserve thatmaxout andmax-pooling
initializations allow training deep maxout networks and obtaining better accuracy than ReLU net-
works, whereas performance is significantly worse or training does not progress for maxout net-
works with other initializations.

Results for Adam Table 4.3 reports test accuracy for networks trained using Adam (Kingma and
Ba, 2015). We compare ReLU andmaxout networkswith the following initializations: maxout,max-
pooling, andHe c = 2. Weobserve that, compared toHe initialization,maxoutandmax-pooling ini-
tializations lead to faster convergence and better test accuracy. Compared to ReLU networks, max-
out networks have better or comparable accuracy if maxout or max-pooling initialization is used.

4.7 Discussion

Westudy thegradients ofmaxoutnetworkswith respect to theparameters and the inputsbyanalyz-
ing a directional derivative of the input-output map. We observe that the distribution of the input-
output Jacobian ofmaxout networks depends on the network input (in contrast to ReLU networks),
which can complicate the stable initialization of maxout networks. Based on bounds on the mo-
ments, we derive an initialization that provably avoids vanishing and exploding gradients in wide
networks. Experimentally, we show that, compared to other initializations, the suggested approach
leads to better performance for fully connected and convolutional deep networks of standardwidth
trained with SGD or Adam and better or similar performance compared to ReLU networks. Addi-
tionally, we refine previous upper bounds on the expected number of linear regions. We also derive
results for the expected curve length distortion, observing that it does not grow exponentially with
the depth in wide networks. Furthermore, we obtain bounds on the maxout NTK, suggesting that
it might not converge to a constant when both the width and depth are large. These contributions
enhance the applicability of maxout networks and add to the theoretical exploration of activation
functions beyond ReLU.

Limitations Even though our proposed initialization is optimal in the sense of the criteria spec-
ified at the beginning of Section 4.4, our results are applicable only when the weights are sampled
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fromN(0, c/fan-in) for some c. Further,wederived theoretical results only for fully-connectednet-
works. Our experiments indicate that they also hold for CNNs: Figure 4.2 demonstrates that gradi-
ents behave according to the theory for fully connected and convolutional networks, and Tables 4.2
and 4.3 show improvement in CNNs performance under the initialization suggested in Section 4.4.
However, we have yet to conduct a theoretical analysis of CNNs.

Future work In future work, we would like to obtain more general results in settings involving
multi-argument functions, such as aggregation functions in graph neural networks, and investigate
the effects that initialization strategies stabilizing the initial gradients have at later stages of train-
ing.
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Proofs and experiment details

Proofs and experiment details are organized as follows.

• 4.A Notation

• 4.B Basics

• 4.C Bounds for the input-output Jacobian norm ‖JN (x)u‖2

• 4.DMoments of the input-output Jacobian norm ‖JN (x)u‖2

• 4.E Equality in distribution for the input-output Jacobian norm andwide network results

• 4.F Activation length

• 4.G Expected number of linear regions

• 4.H Expected curve length distortion

• 4.I NTK

• 4.J Experiment details and additional experiments

4.A Notation

We use the following notation in the paper.

4.A.1 Variables

Network definition

N network
L number of the network layers
l index of a layer
n0 input dimension
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nl width of the lth layer
K maxout rank
k index of a pre-activation feature, k = 1, . . . ,K

k′ argmax of the collection of pre-activation features, k′ = argmaxk{x
(l)
i,k}

ϕl function implemented by the lth hidden layer, ϕl : Rnl−1 → Rnl

ψ linear output layer,ψ : RnL−1 → RnL

W collection of all network weights
b collection of all network biases
Θ collection of all network parameters,Θ = {W , b}
θi ith network parameter; here i = 1, . . . , |Θ|

W
(l)
i,k

network weights of the kth pre-activation function of the ith neuron
in the lth layer,W (l)

i,k ∈ Rnl−1

bi,k
network bias of the kth pre-activation function of the ith neuron
in the lth layer, bi,k ∈ R

x,x(0) network input,x ∈ Rn0 ,x = x(0)

x(l) output of the lth layer,x(l) ∈ Rnl

x
(l)
i,k kth pre-activation of the ith neuron in the lth layer,x(l)

i,k =W
(l)
i,kx

(l−1) + b
(l)
i,k

N total number of the network units
z index of a neuron in the network, z = 1, . . . , N

ζz,k kth pre-activation feature of the zth unit in the network

Network initialization

N(µ, σ2) Gaussian distribution withmean µ and variance σ2

c
a positive constant; we assume that the weights and biases for each hidden layer
are initialized as i.i.d. samples fromN(0, c/nl−1)

Network optimization

L loss function,L : RnL → R

∇Ni(x)
gradients of the network outputs with respect to the inputs,
∇Ni(x) = ∇xNi

∇Ni(Θ),∇ΘNi
gradients of the network outputs with respect to the parameters,
∇Ni(Θ) = ∇ΘNi

JN (x)
input-output Jacobian of the network,
JN (x) = [∇N1(x), . . . ,∇NnL(x)]

T
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Variables appearing in the results

u a fixed unit vector,u ∈ Rn0

A(l) normalized activation length of the lth layer,A(l) = ‖x(l)‖2/nl
t order of a moment

ξl,i(χ
2
1,K)

the smallest order statistic in a sample of sizeK
of chi-squared random variables with 1 degree of freedom

Ξl,i(χ
2
1,K)

the largest order statistic in a sample of sizeK
of chi-squared random variables with 1 degree of freedom

Ξl,i(N(0, 1),K)
the largest order statistic in a sample of sizeK
of standard Gaussian random variables

S
mean of the smallest order statistic in a sample ofK
chi-squared random variables; see Table 4.9 for the exact values

L
mean of the largest order statistic in a sample ofK
chi-squared random variables; see Table 4.9 for the exact values

M
the secondmoment of the largest order statistic in a sample of sizeK
of standard Gaussian random variables; see Table 4.9 for the exact values

vi standard Gaussian random variable vi ∼ N(0, 1)

W
(l) matrices consisting of rowsW (l)

i =W
(l)
i,k′ ∈ Rnl−1 ,

where k′ = argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k}

u(l) u(l) =W
(l)
u(l−1)/‖W (l)

u(l−1)‖whenW (l)
u(l−1) 6= 0 and 0 otherwise;

u(0) = u

γx(l),u(l)
angle between x(l) := (x

(l)
1 , . . . ,x

(l)
nl , 1) and u

(l) := (u
(l)
1 , . . . ,u

(l)
nl , 0)

inRnl+1

Cgrad
any upper bound on (supx∈Rn0 E[‖∇ζz,k(x)‖t])1/t, for any t ∈ N;
here the gradient is with respect to the network input

M smooth 1-dimensional curve of unit length inRn0

N (M) image of the curveM under the mapx 7→ N (x),N (M) ⊆ RnL

KN (x,x) on-diagonal NTK,KN (x,x) =
∑

i(∂N (x)/∂θi)
2

4.A.2 Symbols

[n] {1, . . . , n}
‖ · ‖ ℓ2 vector norm
≤st (≥st) smaller (larger) in the stochastic order; see Section 4.B.2 for the definition
d
= equality in distribution; see Section 4.B.2 for the definition
len(·) length of a curve
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Figure4.3: Illustrationof a simplemaxoutnetworkwith two inputunits, onehidden layer consisting
of twomaxout units of rank 3, and an affine output layer with a single output unit.

4.B Basics

4.B.1 Basics onmaxout networks

4.B.1.1 Definition

Asmentioned in the introduction, a rank-K maxout unit computes themaximum ofK real-valued
affine functions. Concretely, a rank-K maxout unit with n inputs implements a function

Rn → R; x 7→ max
k∈[K]

{〈Wk,x〉+ bk},

whereWk ∈ Rn and bk ∈ R, k ∈ [K] := {1, . . . ,K}, are trainable weights and biases. The
K arguments of the maximum are called the pre-activation features of the maxout unit. A rank-K
maxout unit can be regarded as a composition of an affine map with K outputs and a maximum
gate. A layer corresponds to the parallel computation of several such units. For instance, a layer
with n inputs andmmaxout units computes functions of the form

Rn → Rm; x 7→


maxk∈[K]{〈W

(1)
1,k ,x〉+ b

(1)
1,k}

...
maxk∈[K]{〈W

(1)
m,k,x〉+ b

(1)
m,k}

 ,
where nowW

(1)
i,k and b

(1)
i,k are the weights and biases of the kth pre-activation feature of the ith

maxout unit in the first layer. The situation is illustrated in Figure 4.3 for the case of a network with
two inputs, one layerwith twomaxout units of rank three, and one output layerwith a single output
unit.
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ReLU network
Before training After training

Maxout network
Before training After training

Figure 4.4: Example of a situationwhere the training is unsuccessful for a ReLU network because all
neurons in the first layer are dead, while a maxout network trains successfully on the same dataset.
We plot the breakpoints in the first layer. Notice that they do notmove during the training of a ReLU
network but change their positions in a maxout network.

4.B.1.2 Dying neurons problem

The dying neurons problem in ReLU networks refers to ReLU neurons being inactive on a dataset
and never getting updated during optimization. It can lead to a situation when the training cannot
commence if all neurons in one layer are dead. This problemnever occurs inmaxout networks since
maxout units are always active. We design a simple experiment to illustrate this issue.

We consider a binary classification task on a dataset sampled from a Gaussian mixture of two
univariateGaussiansN(0.8, 0.1) andN(1.6, 0.1). We sample600 training, 200 validation, and200
test points. We construct maxout and ReLU networks with 5 layers and 5 units per layer. Maxout
units rank equals 2. We set weights and biases in the first layer so that the breakpoints are left of
the data. For ReLU, we also ensure that the weights are negative to guarantee that the neurons in
the first layer are inactive. Hence, all the units in the first layer of the ReLU network are dead. Then
we train the network for 20 epochs using SGD with a learning rate of 0.5 and batch size of 32. For
the ReLU networks, since all units in the first layer are dead, the training is unsuccessful, and the
accuracy on the test set is 50%. In contrast, for the maxout network, the test set accuracy is 100%.
Figure 4.4 illustrates this example.
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4.B.2 Basic notions of probability

Weought to remind several probability theory notions thatwe use to state our results. Firstly, recall
that if v1, . . . , vk are independent, univariate standard normal random variables, then the sum of
their squares,

∑k
i=1 v

2
i , is distributed according to the chi-squared distribution with k degrees of

freedom. Wewill denote such a random variable with χ2
k.

Secondly, the largest order statistic is a random variable defined as the maximum of a random
sample, and the smallest order statistic is the minimum of a sample. And finally, a real-valued
random variable X is said to be smaller than Y in the stochastic order, denoted by X ≤st Y , if
Pr(X > x) ≤ Pr(Y > x) for all x ∈ R. We will also denote with d

= equality in distribution
(meaning the cdfs are the same). With this, we start with the results for the squared norm of the
input-output Jacobian ‖JN (x)u‖2.

4.B.3 Details on the equation (4.1)

In (4.1)we are investigatingmagnitude of ∂L(x)
∂W

(l)

i,k′,j

. The reasonwe focus on the Jacobian norm rather

than onC is as follows. We have

∂L(x)
∂W

(l)
i,k′,j

=〈∇NL(N (x)),JN (W
(l)
i,k′,j)〉

=〈∇NL(N (x)),JN (x
(l)
i )〉x(l−1)

j

=〈∇NL(N (x)),JN (x(l))u〉x(l−1)
j , u = ei

=C(x,W )‖JN (x(l))u‖x(l−1)
j

Note thatC(x,W ) = 〈∇NL(N (x)),v〉with v = JN
(
x(l)
)
u/‖JN

(
x(l)
)
u‖, ‖v‖ = 1. Hence

C(x,W ) ≤ ‖∇NL(N (x))‖‖v‖ = ‖∇NL(N (x))‖. The latter term does not directly depend
on the specific parametrization nor the specific architecture of the network but only on the loss
function and the prediction. In view of the description of ∂L(x)

∂W
(l)

i,k′,j

, the variance depends on the

square of x(l−1)
j . Similarly, the variance of the gradient ∇W (l)L(x) = ( ∂L(x)

∂W
(l)

i,k′,j

)j depends on

x(l−1) = (x
(l−1)
j )j and thus depends on ‖x(l−1)‖2. This is how activation length appears in (4.1).

4.C Bounds for the input-output Jacobian norm ‖JN (x)u‖2

4.C.1 Preliminaries

We start by presenting several well-known results we will need for further discussion.

Product of a Gaussianmatrix and a unit vector
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Lemma 4.10. SupposeW is an n × n′ matrix with i.i.d. Gaussian entries andu is a random unit vector
inRn′ that is independent ofW but otherwise has any distribution. Then

1. Wu is independent ofu and is equal in distribution toWv where v is any fixed unit vector inRn′ .

2. If the entries ofW are sampled i.i.d. fromN(µ, σ2), then for all i = 1, . . . , n,Wiu ∼ N(µ, σ2) and
independent ofu.

3. If the entries ofW are sampled i.i.d. fromN(0, σ2), then the squared ℓ2 norm ‖Wu‖2 d
= σ2χ2

n, where
χ2
n is a chi-squared random variable with n degrees of freedom that is independent ofu.

Proof. Statement 1 was proved in, e.g., Hanin et al. (2021, Lemma C.3) by considering directly the
joint distribution ofWu andu.

Statement 2 follows from Statement 1 if we pick v = e1.
To prove Statement 3, recall that by definition of the ℓ2 norm, ‖Wu‖2 =

∑n
i=1 (Wiu)

2. By
Statement 2, for all i = 1, . . . , n,Wiu are Gaussian random variables independent ofuwithmean
zero and variance σ2. Since any Gaussian random variable sampled fromN(µ, σ2) can be written
asµ+ σv, where v ∼ N(0, 1), we canwrite

∑n
i=1 (Wiu)

2 = σ2
∑n

i=1 v
2
i . By definition of the chi-

squared distribution,
∑n

i=1 v
2
i is a chi-squared random variablewithn degrees of freedomdenoted

with χ2
n, which leads to the desired result.

Stochastic order Werecall thedefinitionof a stochastic order. A real-valued randomvariableX is
said to be smaller than Y in the stochastic order, denoted byX ≤st Y , if Pr(X > x) ≤ Pr(Y > x)

for all x ∈ R.

Remark 4.11 (Stochastic ordering for functions). Consider two functions f : X → R and g :

X → R that satisfy f(x) ≤ g(x) for all x ∈ X . Then, for a random variable X , f(X) ≤st

g(X). To see this, observe that for any y ∈ R, Pr(f(X) > y) = Pr(X ∈ {x : f(x) > y}) and
Pr(g(X) > y) = Pr(X ∈ {x : g(x) > y}). Since f(x) ≤ g(x) for all x ∈ X , {x : f(x) > y} ⊆
{x : g(x) > y}. Hence, Pr(f(X) > y) ≤ Pr(g(X) > y), and f(X) ≤st g(X).

Remark4.12 (Stochasticorderandequality indistribution). Consider real-valued randomvariables
X ,Y and Ŷ . IfX ≤st Y andY d

= Ŷ , thenX ≤st Ŷ . SinceY and Ŷ have the samecdfsbydefinition
of equality in distribution, for any y ∈ R, Pr(X > y) ≤ Pr(Y > y) = Pr(Ŷ > y).

4.C.2 Expression for ‖JN (x)u‖2

Before proceeding to the proof of themain statement, given in Theorem 4.1, we present Proposition
4.13. Firstly, in Proposition 4.13 below, we prove an equality that holds almost surely for an input-
output Jacobian under our assumptions. In this particular statement the reasoning closely follows
Hanin et al. (2021, Proposition C.2). The modifications are due to the fact that a maxout network
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Jacobian is a product of matrices consisting of the rows of weights that are selected based onwhich
pre-activation feature attains maximum, while in a ReLU network, the rows in these matrices are
either the neuron weights or zeros.

Proposition 4.13 (Equality for ‖JN (x)u‖2). LetN be a fully-connected feed-forward neural network
with maxout units of rankK and a linear last layer. Let the network have L layers of widths n1, . . . , nL
andn0 inputs. Assume that the weights are continuous random variables (that have a density) and that the
biases are independent of the weights but otherwise initialized using any approach. Letu ∈ Rn0 be a fixed
unit vector. Then, for any input into the network, x ∈ Rn0 , almost surely with respect to the parameter
initialization the Jacobian with respect to the input satisfies

‖JN (x)u‖2 = ‖W (L)u(L−1)‖2
L−1∏
l=1

nl∑
i=1

〈W (l)
i ,u

(l−1)〉2, (4.3)

where vectorsu(l), l = 1, . . . , L− 1 are defined recursively asu(l) = W
(l)
u(l−1)/‖W (l)

u(l−1)‖ when
W

(l)
u(l−1) 6= 0 and 0 otherwise, and u(0) = u. The matricesW (l) consist of rowsW (l)

i = W
(l)
i,k′ ∈

Rnl−1 , i = 1, . . . , nl, where k′ = argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k}, x

(l) is the output of the lth layer,
andx(0) = x.

Proof. The JacobianJN (x)of anetworkN (x) : Rn0 → RnL canbewrittenas aproduct ofmatrices
W

(l), l = 1, . . . , L, depending on the activation region of the input x. The matrixW (l) consists of
rowsW (l)

i = W
(l)
i,k′ ∈ Rnl−1 , where k′ = argmaxk∈[K]{W

(l)
i,kx

(l−1) + b
(l)
i,k} for i = 1, . . . , nl, and

x(l−1) is the lth layer’s input. For the last layer, which is linear, we haveW (L)
=W (L). Thus,

‖JN (x)u‖2 = ‖W (L)W
(L−1) · · ·W (1)

u‖2. (4.4)

Further we denote u with u(0) and assume ‖W (1)
u(0)‖ 6= 0. To see that this holds almost

surely, note that for afixedunit vectoru(0), the probability ofW (1) being such that‖W (1)
u(0)‖ = 0

is 0. This is indeed the case since to satisfy ‖W (1)
u(0)‖ = 0, the weights must be a solution to a

systemofn1 linear equations and this system is regularwhenu 6= 0, so the solution set has positive
co-dimension and hence zero measure. Multiplying and dividing (4.4) by ‖W (1)

u(0)‖2,

‖JN (x)u‖2 =

∥∥∥∥∥W (L)W
(L−1) · · ·W (2) W

(1)
u(0)

‖W (1)
u(0)‖

∥∥∥∥∥
2

‖W (1)
u(0)‖2

=
∥∥∥W (L)W

(L−1) · · ·W (2)
u(1)

∥∥∥2 ‖W (1)
u(0)‖2,

whereu(1) =W
(1)

u(0)/‖W (1)
u(0)‖. Repeating this procedure layer-by-layer, we get

‖W (L)u(L−1)‖2‖W (L−1)
u(L−2)‖2 · · · ‖W (1)

u(0)‖2. (4.5)
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By definition of the ℓ2 norm, for any layer l, ‖W (l)
u(l−1)‖2 =

∑nl
i=1〈W

(l)
i ,u

(l−1)〉2. Substituting
this into (4.5) we get the desired statement.

4.C.3 Stochastic ordering for ‖JN (x)u‖2

Now we prove the result for the stochastic ordering of the input-output Jacobian in a finite-width
maxout network.

Theorem 4.1 (Bounds on ‖JN (x)u‖2). Consider a maxout network with the settings of Section 4.2.
Assume that the biases are independent of the weights but otherwise initialized using any approach. Let
u ∈ Rn0 be a fixed unit vector. Then, almost surely, with respect to the parameter initialization, for any
input into the networkx ∈ Rn0 , the following stochastic order bounds hold:

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

ξl,i(χ
2
1,K) ≤st ‖JN (x)u‖2 ≤st

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

Ξl,i(χ
2
1,K),

where ξl,i(χ2
1,K) andΞl,i(χ

2
1,K) are respectively the smallest and largest order statistic in a sample of size

K of chi-squared random variables with 1 degree of freedom, independent of each other and of the vectorsu
andx.

Proof. From Proposition 4.13, we have the following equality

‖JN (x)u‖2 = ‖W (L)u(L−1)‖2
L−1∏
l=1

nl∑
i=1

〈W (l)
i ,u

(l−1)〉2, (4.6)

where vectors u(l), l = 0, . . . , L − 1 are defined recursively as u(l) = W
(l)
u(l−1)/‖W (l)

u(l−1)‖
and u(0) = u. MatricesW (l) consist of rowsW (l)

i = W
(l)
i,k′ ∈ Rnl−1 , i = 1, . . . , nl, where k′ =

argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k}, andx

(l−1) is the lth layer’s input,x(0) = x.
We assumed that weights in the last layer are sampled from a Gaussian distribution withmean

zero and variance 1/nL−1. Then, by Lemma 4.10 item 3, ‖W (L)u(L−1)‖2 d
= (1/nL−1)χ

2
nL

and is
independent ofu(L−1). In equation (4.6), using this observation and thenmultiplying and dividing
the summands by c/nl−1 and rearranging we obtain

‖JN (x)u‖2 d
=

1

nL−1
χ2
nL

L−1∏
l=1

c

nl−1

nl∑
i=1

(nl−1

c
〈W (l)

i ,u
(l−1)〉2

)
=

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

(nl−1

c
〈W (l)

i ,u
(l−1)〉2

)
.

Now we focus on
√
nl−1/c 〈W

(l)
i ,u

(l−1)〉. Since we have assumed that the weights are sam-
pled from a Gaussian distribution with zero mean and variance c/nl−1, any weight W (l)

i,k,j , j =
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1, . . . , nl−1, can be written as
√
c/nl−1v

(l)
i,k,j , where v(l)i,k,j is a standard Gaussian random variable.

We also writeW (l)
i,k =

√
c/nl−1V

(l)
i,k , where V (l)

i,k is an nl−1-dimensional standard Gaussian ran-

dom vector. Observe that for any k′ ∈ [K], 〈W (l)
i,k′ ,u

(l−1)〉2 ≤ maxk∈[K]{〈W
(l)
i,k ,u

(l−1)〉2} and

〈W (l)
i,k′ ,u

(l−1)〉2 ≥ mink∈[K]{〈W
(l)
i,k ,u

(l−1)〉2}. Therefore,

c

nl−1
min
k∈[K]

{〈
V

(l)
i,k ,u

(l−1)
〉2}

≤ 〈W (l)
i ,u

(l−1)〉2 ≤ c

nl−1
max
k∈[K]

{〈
V

(l)
i,k ,u

(l−1)
〉2}

.

Notice that vectorsu(l−1) are unit vectors by their definition. By Lemma 4.10, the inner product
of a standardGaussian vector and aunit vector is a standardGaussian randomvariable independent
of the given unit vector.

By definition, a squared standard Gaussian random variable is distributed as χ2
1, a chi-squared

random variable with 1 degree of freedom. Hence, maxk∈[K]{〈V
(l)
i,k ,u

(l−1)〉2} is distributed as the
largest order statistic in a sample of sizeK of chi-squared random variables with 1 degree of free-
dom. Wewill denote sucha randomvariablewithΞl,i(χ

2
1,K). Likewise,mink∈[K]{〈V

(l)
i,k ,u

(l−1)〉2}
is distributed as the smallest order statistic in a sample of sizeK of chi-squared random variables
with 1 degree of freedom, denoted with ξl,i(χ2

1,K).
Combining results for each layer, we obtain the following bounds

‖JN (x)u‖2 ≤ 1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

max
k∈[K]

{〈
V

(l)
i,k ,u

(l−1)
〉2} d

=
1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

Ξl,i(χ
2
1,K),

‖JN (x)u‖2 ≥ 1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

min
k∈[K]

{〈
V

(l)
i,k ,u

(l−1)
〉2} d

=
1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

ξl,i(χ
2
1,K).

Then, by Remarks 4.11 and 4.12, the following stochastic ordering holds

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

ξl,i(χ
2
1,K) ≤st ‖JN (x)u‖2 ≤st

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

Ξl,i(χ
2
1,K),

which concludes the proof.

4.D Moments of the input-output Jacobian norm ‖JN (x)u‖2

In the proof on the bounds of the moments, we use an approach similar to Hanin et al. (2021) for
upper bounding the moments of the chi-squared distribution.

Corollary 4.2 (Bounds on themoments of ‖JN (x)u‖2). Consider amaxout network with the settings
of Section 4.2. Assume that the biases are independent of the weights but otherwise initialized using any
approach. Letu ∈ Rn0 be a fixed unit vector andx ∈ Rn0 be any input into the network, Then
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(i)
nL
n0

(cS)L−1 ≤ E[‖JN (x)u‖2] ≤ nL
n0

(cL)L−1,

(ii) Var
[
‖JN (x)u‖2

]
≤
(
nL
n0

)2

c2(L−1)

(
K2(L−1) exp

{
4

(
L−1∑
l=1

1

nlK
+

1

nL

)}
− S2(L−1)

)
,

(iii) E
[
‖JN (x)u‖2t

]
≤
(
nL
n0

)t

(cK)t(L−1) exp

{
t2

(
L−1∑
l=1

1

nlK
+

1

nL

)}
, t ∈ N,

where the expectation is taken with respect to the distribution of the network weights. The constantsS andL
depend onK anddenote themeans of the smallest and the largest order statistic in a sample ofK chi-squared
random variables. ForK = 2, . . . , 10, S ∈ [0.02, 0.4] andL ∈ [1.6, 4]. See Table 4.9 in Section 4.D for
the exact values.

Proof. We first prove results for the mean, then for the moments of order t > 1, and finish with the
proof for the variance.

Mean Using mutual independence of the variables in the bounds in Theorem 4.1, and that if two
non-negative univariate random variablesX and Y are such thatX ≤st Y then E[Xn] ≤ E[Y n]

for all n ≥ 1 (Müller and Stoyan, 2002, Theorem 1.2.12),

1

n0
E
[
χ2
nL

] L−1∏
l=1

c

nl

nl∑
i=1

E [ξl,i] ≤ E[‖JN (x)u‖2] ≤ 1

n0
E
[
χ2
nL

] L−1∏
l=1

c

nl

nl∑
i=1

E [Ξl,i] .

where we used ξl,i and Ξl,i as shorthands for ξl,i(χ2
1,K) and Ξl,i(χ

2
1,K). Using the formulas for

the largest and the smallest order statistic pdfs from Remark 4.14, the largest order statistic mean
equals

E [Ξl,i] =
K√
2π

∫ ∞

0

(
erf
(√

x

2

))K−1

x1/2e−x/2dx = L,

and the smallest order statistic mean equals

E [ξl,i] =
K√
2π

∫ ∞

0

(
1− erf

(√
x

2

))K−1

x1/2e−x/2dx = S.

Here we denoted the right hand-sides with L and S, which are constants depending on K, and can
be computed exactly forK = 2 andK = 3, and approximately for higherK-s, see Table 4.9. It is
known thatE

[
χ2
nL

]
= nL. Combining, we get

nL
n0

(cS)L−1 ≤ E[‖JN (x)u‖2] ≤ nL
n0

(cL)L−1.
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Moments of order t > 1 As above, using mutual independence of the variables in the bounds
in Theorem 4.1, and that if two non-negative univariate random variablesX and Y are such that
X ≤st Y thenE[Xn] ≤ E[Y n] for all n ≥ 1 (Müller and Stoyan, 2002, Theorem 1.2.12),

E[‖JN (x)u‖2t] ≤ E

( 1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

Ξl,i

)t


=

(
nL
n0

)t( 1

nL

)t

E
[(
χ2
nL

)t] L−1∏
l=1

(
c

nl

)t

E

[(
nl∑
i=1

Ξl,i

)t]
.

(4.7)

Upper-bounding the maximum of chi-squared variables with a sum,

(
c

nl

)t

E

[(
nl∑
i=1

Ξl,i

)t]
≤
(
c

nl

)t

E

( nl∑
i=1

K∑
k=1

(χ2
1)l,i,k

)t
 =

(
c

nl

)t

E
[(
χ2
nlK

)t]
,

wherewe used that a sumofnlK chi-squared variableswith one degree of freedom is a chi-squared
variablewithnlK degreesof freedom. Using the formula fornoncentralmomentsof thechi-squared
distribution and the inequality 1 + x ≤ ex,(

c

nl

)t

E
[(
χ2
nlK

)t]
=

(
c

nl

)t

(nlK) (nlK + 2) · · · (nlK + 2t− 2)

= ctKt · 1 ·
(
1 +

2

nlK

)
· · ·
(
1 +

2t− 2

nlK

)
≤ ctKt exp

{
t−1∑
i=0

2i

nlK

}
≤ ctKt exp

{
t2

nlK

}
,

where we used the formula for calculating the sum of consecutive numbers
∑t−1

i=1 i = t(t − 1)/2.
Similarly, (

1

nL

)t

E
[(
χ2
nL

)t] ≤ exp
{
t2

nL

}
.

Combining, we upper bound (4.7) with

(
nL
n0

)t

(cK)t(L−1) exp

{
t2

(
L−1∑
l=1

1

nlK
+

1

nL

)}
.

Variance Combining the upper bound on the secondmoment and the lower bound on themean,
we get the following upper bound on the variance

Var
[
‖JN (x)u‖2

]
≤
(
nL
n0

)2

c2(L−1)

(
K2(L−1) exp

{
4

(
L−1∑
l=1

1

nlK
+

1

nL

)}
− S2(L−1)

)
.
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which concludes the proof.

Remark 4.14 (Computing the constants). Here we provide the derivations necessary to compute
the constants equal to the moments of the largest and the smallest order statistics appearing in
the results. Firstly, the cdf of the largest order statistic of independent univariate random variables
y1, . . . , yK with cdfF (x) and pdf f(x) is

Pr
(
max
k∈[K]

{yk} < x

)
= Pr

(
K⋂
k=1

(yk < x)

)
=

K∏
k=1

Pr (yk < x) = (F (x))K .

Hence, the pdf isK(F (x))K−1f(x). For the smallest order statistic, the cdf is

Pr
(

min
k∈[K]

{yk} < x

)
= 1−

K∏
k=1

Pr (yk ≥ x) = 1− (1− F (x))K .

Thus, the pdf isK (1− F (x))K−1 f(x).
Nowwe obtain pdfs for the distributions that are used in the results.

Chi-squared distribution The cdf of a chi-squared random variable χ2
k with k = 1

degree of freedom is F (x) = (Γ(k/2))−1γ(k/2, x/2) = erf(
√
x/2), and the pdf is

f(x) = (2k/2Γ(k/2))−1xk/2−1e−x/2 = (2π)−1/2x−1/2e−x/2. Here we used that Γ(1/2) =
√
π

and γ(1/2, x/2) =
√
π erf(

√
x/2). Therefore, the pdf of the largest order statistic in a sample of

K chi-squared random variables with 1 degree of freedomΞl,i(χ
2
1,K) is

K

(
erf
(√

x

2

))K−1
1√
2π
x−

1
2 e−

x
2 .

The pdf of the smallest order statistic in a sample ofK chi-squared random variables with 1 degree
of freedom ξl,i(χ

2
1,K) is

K

(
1− erf

(√
x

2

))K−1
1√
2π
x−

1
2 e−

x
2 .

Standard Gaussian distribution Recall that the cdf of a standard Gaussian random variable is
F (x) = 1/2(1 + erf(x/

√
2)), and the pdf is f(x) = 1/

√
2π exp{−x2/2}. Then, for the pdf of the

largest order statistic in a sample ofK standardGaussian randomvariablesΞl,i(N(0, 1),K)weget

K

2K−1
√
2π

(
1 + erf

(
x√
2

))K−1

e−
x2

2 .
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Table 4.9: ConstantsL and S denote the means of the largest and the smallest order statistics in a
sample of sizeK of chi-squared random variables with 1 degree of freedom. ConstantM denotes
the secondmoment of the largest order statistic in a sample of sizeK of standard Gaussian random
variables. See Remark 4.14 for the explanation of how these constants are computed.

MAXOUT RANK L S M

2 1.63662 0.36338 1
3 2.10266 0.1928 1.27566
4 2.47021 0.1207 1.55133
5 2.77375 0.08308 1.80002
6 3.03236 0.06083 2.02174
7 3.25771 0.04655 2.2203
8 3.45743 0.0368 2.39954
9 3.63681 0.02984 2.56262
10 3.79962 0.0247 2.7121

Constants Nowwe obtain formulas for the constants. For themean of the smallest order statistic
in a sample ofK chi-squared random variables with 1 degree of freedom ξl,i(χ

2
1,K), we get

S =
K√
2π

∫ ∞

0
x

1
2

(
1− erf

(√
x

2

))K−1

e−
x
2 dx.

Themean of the largest order statistic in a sample ofK chi-squared randomvariableswith 1 degree
of freedomΞl,i(χ

2
1,K) is

L =
K√
2π

∫ ∞

0
x

1
2

(
erf
(√

x

2

))K−1

e−
x
2 dx.

The secondmoment of the largest order statistic in a sample ofK standard Gaussian random vari-
ablesΞl,i(N(0, 1),K) equals

M =
K

2K−1
√
2π

∫ ∞

−∞
x2
(
1 + erf

(
x√
2

))K−1

e−
x2

2 dx.

These constants can be evaluated using numerical computation software. The values estimated
forK = 2, . . . , 10 usingMathematica (Wolfram Research, Inc, 2022) are in Table 4.9.

4.E Equality in distribution for the input-output Jacobian norm and
wide network results

Here we prove results from Section 4.3.2. We will use the following theorem from Anderson (2003).
We reference it here without proof, but remark that it is based on thewell-known result that uncor-
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related jointly Gaussian random variables are independent.

Theorem 4.15 (Anderson 2003, Theorem 3.3.1). SupposeX1, . . . ,XN are independent, whereXα is
distributed according to N(µα,Σ). Let C = (cαβ) be an N × N orthogonal matrix. Then Yα =∑N

β=1 cαβXβ is distributed according toN(να,Σ), where να =
∑N

β=1 cαβµβ , α = 1, . . . , N , and
Y1, . . . ,YN are independent.

Remark 4.16. Wewill use Theorem 4.15 in the following way. Notice that it is possible to consider
a vector v with entries sampled i.i.d. fromN(0, σ2) in Theorem 4.15 and treat entries of v as a set
of 1-dimensional vectors X1, . . . ,XN . Then we can obtain that products of the columns of the
orthogonal matrixC and the vector v, Yβ =

∑N
α=1 cαβvα, are distributed according toN(0, σ2)

and are mutually independent.

Theorem 4.3 (Equality in distribution for ‖JN (x)u‖2). Consider a maxout network with the settings
of Section 4.2. Let u ∈ Rn0 be a fixed unit vector and x ∈ Rn0 ,x 6= 0 be any input into the network.
Then, almost surely, with respect to the parameter initialization, ‖JN (x)u‖2 equals in distribution

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

(
vi

√
1− cos2 γx(l−1),u(l−1) + Ξl,i(N(0, 1),K) cos γx(l−1),u(l−1)

)2
,

where vi and Ξl,i(N(0, 1),K) are independent, vi ∼ N(0, 1), Ξl,i(N(0, 1),K) is the largest
order statistic in a sample of K standard Gaussian random variables. Here γx(l),u(l) denotes the
angle between x(l) := (x

(l)
1 , . . . ,x

(l)
nl , 1) and u(l) := (u

(l)
1 , . . . ,u

(l)
nl , 0) in Rnl+1, where

u(l) = W
(l)
u(l−1)/‖W (l)

u(l−1)‖ when W (l)
u(l−1) 6= 0 and 0 otherwise, and u(0) = u. The

matricesW (l) consist of rowsW (l)
i =W

(l)
i,k′ ∈ Rnl−1 , where k′ = argmaxk∈[K]{W

(l)
i,kx

(l−1) + b
(l)
i,k}.

Proof. By Proposition 4.13, almost surely with respect to the parameter initialization,

‖JN (x)u‖2 = ‖W (L)u(L−1)‖2
L−1∏
l=1

nl∑
i=1

〈W (l)
i ,u

(l−1)〉2, (4.8)

where vectors u(l), l = 0, . . . , L − 1 are defined recursively as u(l) = W
(l)
u(l−1)/‖W (l)

u(l−1)‖
and u(0) = u. MatricesW (l) consist of rowsW (l)

i = W
(l)
i,k′ ∈ Rnl−1 , i = 1, . . . , nl, where k′ =

argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k}, andx

(l−1) is the lth layer’s input,x(0) = x.
We assumed that weights in the last layer are sampled from a Gaussian distribution withmean

zero andvariance1/nL−1. Then, by Lemma4.10, ‖W (L)u(L−1)‖2 d
= (1/nL−1)χ

2
nL

and is indepen-
dent of u(L−1). We use this observation in the equation (4.6), multiply and divide the summands
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in the expression by c/nl−1 and rearrange to obtain that

‖JN (x)u‖2 d
=

1

nL−1
χ2
nL

L−1∏
l=1

c

nl−1

nl∑
i=1

(nl−1

c
〈W (l)

i ,u
(l−1)〉2

)
=

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

(nl−1

c
〈W (l)

i ,u
(l−1)〉2

)
.

(4.9)

Wedefinex(l−1) := (x
(l−1)
1 , . . . ,x

(l−1)
nl−1 , 1) ∈ Rnl−1+1 andu(l−1) := (u

(l−1)
1 , . . . ,u

(l−1)
nl−1 , 0) ∈

Rnl−1+1, ‖u‖ = 1. We append the vectors of biases to the weight matrices and denote obtained
matrices withW(l) ∈ Rnl×(nl−1+1). Then (4.9) equals

1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

(nl−1

c
〈W(l)

i ,u
(l−1)〉2

)
.

Now we focus on
√
nl−1/c 〈W

(l)
i ,u

(l−1)〉. Since we have assumed that the weights and bi-
ases are sampled from the Gaussian distribution with zero mean and variance c/nl−1, any weight
W

(l)
i,k,j , j = 1, . . . , nl−1 (or bias), can be written as

√
c/nl−1v

(l)
i,k,j , where v(l)i,k,j is standard Gaus-

sian. Therefore,

nl−1

c
〈W(l)

i ,u
(l−1)〉2 = 〈V(l)

i ,u
(l−1)〉2, (4.10)

where V
(l)
i = V

(l)
i,k′ ∈ Rnl−1+1, k′ = argmaxk∈[K]{〈V

(l)
i,k, x

(l−1)〉}, V(l)
i,k are (nl−1 + 1)-

dimensional standard Gaussian random vectors.
We construct an orthonormal basis B = (b1, . . . , bnl−1+1) of Rnl−1+1, where we set b1 =

x(l−1)/‖x(l−1)‖ and choose the other vectors to be unit vectors orthogonal to b1. The change of
basis matrix from the standard basis I to the basis B is given by BT ; see, e.g., Anton and Rorres
(2013, Theorem 6.6.4). Then, any rowV

(l)
i,k an be expressed as

V
(l)
i,k = ck,1b1 + · · ·+ ck,nl−1+1bnl−1+1,

where ck,j = 〈V(l)
i,k, bj〉, j = 1, . . . , nl−1 + 1.

The coordinate vector of x(l−1) relative toB is (‖x(l−1)‖, 0, . . . , 0). Vector u(l−1) inB has the
coordinate vector (〈u(l−1), b1〉, . . . , 〈u(l−1), bnl−1+1〉). This coordinate vector has norm 1 since the
change of basis between two orthonormal bases does not change the ℓ2 norm; see, e.g., Anton and
Rorres (2013, Theorem 6.3.2).

For the maximum, using the representation of the vectors in the basisB, we get

〈V(l)
i , x

(l−1)〉 = max
k∈[K]

{
〈V(l)

i,k, x
(l−1)〉

}
= max

k∈[K]

{
ck,1‖x(l−1)‖

}
= ‖x(l−1)‖ max

k∈[K]
{ck,1} . (4.11)
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Therefore, in the basisB,V(l)
i has components (maxk∈[K] {ck,1} , ck′,2, . . . , ck′,nl−1+1). By Theo-

rem 4.15, for all k = 1, . . . ,K , j = 1, . . . , nl−1 + 1, the coefficients ck,j are mutually independent
standard Gaussian random variables that are also independent of vectors bj , j = 1, . . . , nl−1, by
Lemma 4.10 and ofu(l−1).

〈V(l)
i ,u

(l−1)〉 = max
k∈[K]

{ck,1} 〈u(l−1), b1〉+
nl−1+1∑
j=2

ck′,j〈u(l−1), bj〉

d
= Ξl,i(N(0, 1),K)〈u(l−1), b1〉+

nl−1+1∑
j=2

vj〈u(l−1), bj〉,

(4.12)

where Ξl,i(N(0, 1),K) is the largest order statistic in a sample of K standard Gaussian ran-
dom variables, and vj ∼ N(0, 1). Since we have simply written equality in distribution for
maxk∈[K] {ck,1} and ck′,j , the variablesΞl,i(N(0, 1),K) and vj , j = 2, . . . , nl−1 are alsomutually
independent, and independent of vectors bj , j = 1, . . . , nl−1, and of u(l−1). In the following we
will useΞl,i as a shorthand forΞl,i(N(0, 1),K).

A linear combination
∑n

i=1 ai, vi of Gaussian random variables v1, . . . , vn, vj ∼ N(µj , σ
2
j ),

j = 1, . . . , n with coefficients a1, . . . , an is distributed according to N(
∑n

i=1 aiµi,
∑n

i=1 a
2
iσ

2
i ).

Hence,
∑nl−1+1

j=2 vj〈u(l−1), bj〉 ∼ N(0,
∑nl−1+1

j=2 〈u(l−1), bj〉2). Since
∑nl−1+1

j=2 〈u(l−1), bj〉2 = 1−
〈u(l−1), b1〉2 = 1− cos2 γx(l−1),u(l−1) , we get

nl−1+1∑
j=2

vj〈u(l−1), bj〉+ Ξl,i〈u(l−1), b1〉

d
= vi

√
1− cos2 γx(l−1),u(l−1) + Ξl,i cos γx(l−1),u(l−1) ,

(4.13)

where vi ∼ N(0, 1). Notice that vi
√

1− cos2 γx(l−1),u(l−1) and Ξl,i cos γu(l−1),x(l−1) are stochas-
tically independent because vi andΞl,i are independent andmultiplying random variables by con-
stants does not affect stochastic independence.

Remark 4.17. The result in Theorem4.3 also holdswhen the biases are initialized to zero. The proof
is simplified in this case. There is no need to define additional vectors x(l−1) and u(l−1), and when
constructing the basis, the first vector is defined as b1 := x(l−1)/‖x(l−1)‖. The rest of the proof
remains the same.

Remark 4.18 (Effects of thewidth and depth on amaxout network). According to Theorem4.3, the
behavior of‖JN (x)u‖2 in amaxoutnetworkdependson the cos γx(l−1),u(l−1) , which changes as the
networkgetswiderordeeper. Figure4.8demonstrateshowthewidthanddepthaffect‖JN (x)u‖2.
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Width 2 Width 10 Width 100

Figure 4.5: The plots show that | cos γx(l),u(l) | grows with the network depth and eventually con-
verges to 1 for wide networks and maxout rank K > 2. The results were averaged over 1000
parameter initializations, and both weights and biases were sampled from N(0, c/fan-in), c =
1/E[(Ξ(N(0, 1),K))2], as discussed in Section 4.4. Vectorsx anduwere sampled fromN(0, I).

c = 0.3, c < 1/E[Ξ2] c = 1/E[Ξ2] c = 10, c > 1/E[Ξ2]

Figure 4.6: The plots show that | cos γx(l),u(l) | does not converge to 1 for c < 1/E[Ξ2] and converges
for c ≥ 1/E[Ξ2]. The network had 100 neurons at each layer, and both weights and biases were
sampled fromN(0, c/fan-in). The results were averaged over 1000 parameter initializations. Vec-
torsx anduwere sampled fromN(0, I).

Wide shallow networks Since independent and isotropic random vectors in high-dimensional
spaces tend to be almost orthogonal (Vershynin, 2018, Remark 2.3.5), cos γx(0),u(0) will be close to
0 with high probability for wide networks if the entries of the vectors x and u are i.i.d. standard
Gaussian (or i.i.d. from an isotropic distribution). Hence, we expect that the cosine will be around
zero for the earlier layers of wide networks and individual units will behave more as the squared
standard Gaussians.

Wide deep networks Consider wide and deep networks, where the layers l = 0, . . . , L − 1 are
approximately of the same width nl1 ≈ nl2 , l1, l2 = 0, . . . , L − 1. Assume that c = 1/M =

1/E[(Ξ(N(0, 1),K))2]. We will demonstrate that under these conditions. | cos γx(l),u(l) | ≈ 1 for
the later layers for 2 < K < 100. Thus, individual units behave as the squared largest order statis-
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Figure 4.7: Second moment of Ξ(N(0, 1),K) for different sample sizesK . It increases withK for
anyK , 2 ≤ K ≤ 100, andE[(Ξ(N(0, 1),K))2] > 1 forK > 2.

tics. To see this, we need to estimate cos γx(l),u(l) from Theorem 4.3, which is defined as

cos γx(l),u(l) = ρ
(l)
xu =

〈x(l),u(l)〉
‖x(l)‖‖u(l)‖

=
〈x(l),u(l)〉
‖x(l)‖‖u(l)‖

=

nl−1

nl
〈x(l),u(l)〉(√

nl−1

nl
‖x(l)‖

)(√
nl−1

nl
‖u(l)‖

) ,
where we denoted cos γx(l),u(l) with ρ(l)xu , and with u(l), u(l) before the normalization.

Firstly, for x(l) we get

nl−1

nl
‖x(l)‖2 = nl−1

nl

(
nl∑
i=1

(
max
k∈[K]

{
W

(l)
i,kx

(l−1)
})2

+ 1

)

= c‖x(l−1)‖2
 1

nl

nl∑
i=1

(
max
k∈[K]

{
V

(l)
i,k

x(l−1)

‖x(l−1)‖

})2

+
nl−1

c‖x(l−1)‖2nl


d
= c‖x(l−1)‖2

(
1

nl

nl∑
i=1

Ξ2
l,i +

nl−1

c‖x(l−1)‖2nl

)
,

(4.14)

where in the second line we used thatW(l)
i,k =

√
c/nl−1V

(l)
i,k,V

(l)
i,k,j ∼ N(0, 1), j = 1, . . . , nl−1.

In the third line,Ξl,i
d
= Ξ(N(0, 1),K) is the largest order statistic in a sample ofK standard Gaus-

sians, since by Lemma 4.10,V(l)
i,kx

(l−1)/‖x(l−1)‖ are mutually independent standard Gaussian ran-
dom variables. When the networkwidth is large, 1/nl

∑nl
i=1 Ξ

2
l,i approximates the secondmoment

of the largest order statistic, and nl−1/nl ≈ 1when the layer widths are approximately the same.
Then

nl−1

nl
‖x(l)‖2 ≈ c‖x(l−1)‖2

(
E
[
Ξ2
]
+

1

c‖x(l−1)‖2

)
.
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Figure 4.8: Shown is the expectation value of the square norm of the directional derivative of the
input-output map of a maxout network for a fixed random direction with respect to the weights,
plotted as a function of the input. Weights and biases are sampled fromN(0, 1/fan-in), and biases
are zero. Inputs are standard Gaussian vectors. Vector u is a one-hot vector with 1 at a random
position, and it is the same for one setup. We sampled 1000 inputs and 1000 initializations for each
input. The left end corresponds to the second moment of the Gaussian distribution, and the right
end to the second moment of the largest order statistic. Observe that for wide and deep networks,
the mean is closer to the secondmoment of the largest order statistic.

Nowwewill show that 1/‖x(l−1)‖2 ≈ 0. Firstly, by the same reasoning as above,

‖x(l−1)‖2 =
nl−1∑
i=1

(
max
k∈[K]

{
W

(l)
i,kx

(l−2)
})2

+ 1

d
= ‖x(0)‖2 c

l−1nl−1

n0

l−1∏
j=1

1

nj

nj∑
i=1

Ξ2
l,i + · · ·+ c2

nl−1

nl−3

l−1∏
j=l−2

1

nj

nj∑
i=1

Ξ2
l,i +

cnl−1

nl−2

1

nl−1

nl−1∑
i=1

Ξ2
l,i + 1.

Since we assumed that the layer widths are large and approximately the same,

‖x(l−1)‖2 ≈ ‖x(0)‖2
(
cE[Ξ2]

)l−1
+ · · ·+ cE[Ξ2] + 1 = ‖x(0)‖2

(
cE[Ξ2]

)l−1
+

l−2∑
j=0

(
cE[Ξ2]

)j
.
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Using the assumption that c = 1/E[Ξ2], we obtain that ‖x(l−1)‖2 ≈ ‖x(0)‖2 + (l − 1) and goes to
infinity with the network depth. Hence, 1/‖x(l−1)‖2 ≈ 0 and

nl−1

nl
‖x(l)‖2 ≈ c‖x(l−1)‖2E

[
Ξ2
]
.

Nowconsideru(l). Using the reasoning fromTheorem4.3, see equations (4.12) and (4.13),u(l)
i

d
=

c/nl−1(Ξl,iρ
(l−1)
xu + vi

√
1− (ρ

(l−1)
xu )2), i = 1, . . . , nl, vi ∼ N(0, 1). Then in a wide network

‖u(l)‖2 ≈ cnl
nl−1

E

(Ξρ(l−1)
xu + v

√
1−

(
ρ
(l−1)
xu

)2)2
 . (4.15)

Note that the random variableΞ in equations (4.14) and (4.15) is the same based on the derivations
in Theorem 4.3, to see this, compare equations (4.11) and (4.12).

Similarly, for the dot product 〈x(l),u(l)〉 in a wide network we obtain that

〈x(l),u(l)〉 ≈ ‖x(l−1)‖ cnl
nl−1

E

[
Ξ

(
Ξρ

(l−1)
xu + v

√
1−

(
ρ
(l−1)
xu

)2)]
.

Hence, we have the following recursive map for ρ(l)xu

ρ
(l)
xu =

E

[
Ξ

(
Ξρ

(l−1)
xu + v

√
1−

(
ρ
(l−1)
xu

)2)]

√
E [Ξ2]

√√√√√E

(Ξρ(l−1)
xu + v

√
1−

(
ρ
(l−1)
xu

)2)2


=
1√
E [Ξ2]

ρ
(l−1)
xu E[Ξ2]√(

ρ
(l−1)
xu

)2
(E[Ξ2]− 1) + 1

,

where we used independence of v and Ξ, see Theorem 4.3, and that E[v] = 0 and E[v2] = 1. This
map has fixed points ρ∗ = ±1, which can be confirmed by direct calculation. To check if these fixed
points are stable, we need to consider the values of the derivative ∂ρ(l)xu/∂ρ

(l−1)
xu at them. We obtain

∂ρ
(l)
xu

∂ρ
(l−1)
xu

=
(
E[Ξ2]

) 1
2

((
ρ
(l−1)
xu

)2
(E[Ξ2]− 1) + 1

)− 3
2

.

When ρ(l−1)
xu = ±1 this partial derivative equals 1/E[Ξ2] < 1 for K > 2, since E[Ξ2] > 1,

see Table 4.9 forK = 2, . . . , 10 and Figure 4.7 forK = 2, . . . , 100. Hence, the fixed points are
stable (Strogatz, 2018, Chapter 10.1). Note that forK = 2, 1/E[Ξ2] = 1, and this analysis is in-
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conclusive. Therefore, if the network parameters are sampled from N(0, c/nl−1), c = 1/M =

1/E[Ξ(N(0, 1),K)2], we expect that | cos γx(l),u(l) | ≈ 1 for the later layers of deep networks and
individual units will behave more as the squared largest order statistics. Figure 4.5 demonstrates
convergence of | cos γx(l),u(l) | to 1with the depth forwide networks, and Figure 4.6 shows that there
is no convergence for c < 1/E[Ξ2] and that the cosine still converges for c > 1/E[Ξ2].

Remark 4.19 (Expectation of ‖JN (x)u‖2 in awide and deep network). According to Remark 4.18,
for deep and wide networks, we can expect that | cos γx(l−1),u(l−1) | ≈ 1 if c = 1/M, which allows
obtaining an approximate equality for the expectation of ‖JN (x)u‖2. Hence, using Theorem 4.3,

‖JN (x)u‖2 ≈ 1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

(Ξl,i(N(0, 1),K))2 . (4.16)

Then, usingmutual independence of the variables in equation (4.16),

E[‖JN (x)u‖2] ≈ 1

n0
E
[
χ2
nL

] L−1∏
l=1

c

nl

nl∑
i=1

E
[
(Ξl,i(N(0, 1),K))2

]
.

SinceM = E[(Ξl,i(N(0, 1),K))2], see Table 4.9, and c = 1/M, we get

E[‖JN (x)u‖2] ≈ nL
n0

(cM)L−1 =
nL
n0
.

Remark 4.20 (Lower bound on themoments in awide and deep network). Using (4.16) and taking
into account the mutual independence of the variables,

E[‖JN (x)u‖2t] ≈ E

( 1

n0
χ2
nL

L−1∏
l=1

c

nl

nl∑
i=1

(Ξl,i(N(0, 1),K))2
)t


=

(
nL
n0

)t( 1

nL

)t

E
[(
χ2
nL

)t] L−1∏
l=1

(
c

nl

)t

E

[(
nl∑
i=1

(Ξl,i(N(0, 1),K))2
)t]

≥
(
nL
n0

)t( 1

nL

)t

E
[(
χ2
nL

)t] L−1∏
l=1

(
c

nl

)t
(

nl∑
i=1

E
[
(Ξl,i(N(0, 1),K))2

])t

,

(4.17)
where in the last inequality, we used linearity of expectation and Jensen’s inequality since taking
the tth power for t ≥ 1 is a convex function for non-negative arguments. Using the formula for
noncentral moments of the chi-squared distribution and the inequality lnx ≥ 1 − 1/x, ∀x > 0,
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meaning that x = exp{lnx} ≥ exp{1− 1/x}, we get

(
1

nL

)t

E
[(
χ2
nL

)t]
=

(
1

nl

)t

(nL) (nL + 2) · · · (nL + 2t− 2) =
t−1∏
i=0

(
1 +

2i

nL

)

≥ exp

{
t−1∑
i=1

(
2i

nL + 2i

)}
≥ exp

{
t− 1

2nL

}
,

(4.18)

where in the last inequality, we used that 2i/(nL +2i) ≥ 2/(nL +2) ≥ 1/(2nL) for all i, nL ≥ 1.
Using thatE[(Ξl,i(N(0, 1),K))2] = M, see Table 4.9, and combing this with (4.17) and (4.18),

E[‖JN (x)u‖2t] ⪆
(
nL
n0

)t

exp
{
t− 2

2nL

}
(cM)t(L−1) . (4.19)

The bound in (4.19) can be tightened if a tighter lower bound on the moments of the sum of the
squared largest order statistics in a sample ofK standard Gaussians is known. To derive a lower
bound on the moments t ≥ 2 for the general case in Corollary 4.2, it is necessary to obtain a non-
trivial lower bound on the moments of the sum of the smallest order statistics in a sample of K
chi-squared random variables with 1 degree of freedom.

4.F Activation length

Herewe prove the results fromSubsection 4.3.3. Figure 4.9 demonstrates a closematch between the
estimated normalized activation length and the behavior predicted in Corollary 4.21 and 4.5.

Corollary 4.21 (Distribution of the normalized activation length). Consider a maxout network with
the settings of Section 4.2. Then, almost surelywith respect to the parameter initialization, for any input into
the networkx ∈ Rn0 and l′ = 1, . . . , L−1, the normalized activation lengthA(l′) is equal in distribution
to

‖x(0)‖2 1

n0

l′∏
l=1

(
c

nl

nl∑
i=1

Ξl,i(N(0, 1),K)2

)
+

l′∑
j=2

 1

nj−1

l′∏
l=j

(
c

nl

nl∑
i=1

Ξl,i(N(0, 1),K)2

) ,
where x(0) := (x1, . . . ,xn0 , 1) ∈ Rn0+1, Ξl,i(N(0, 1),K) is the largest order statistic in a sample of
K standard Gaussian random variables, andΞl,i(N(0, 1),K) are stochastically independent. Notice that
variablesΞl,i(N(0, 1),K)with the same indices are the same random variables.

Proof. Define x(l) = (x1, . . . ,xnl
, 1) ∈ Rnl+1. Append the bias columns to the weight matri-

ces and denote obtained matrices with W(l) ∈ Rnl×(nl−1+1). Denote W(l)
i,k′ ∈ Rnl−1+1, k′ =

argmaxk∈[K]{〈W
(l)
i,k, x

(l−1)〉}, withW
(l)
i . Under this notation, ‖x(l)‖2 = (‖x(l)‖2 + 1), ‖x(l)‖ =
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Figure 4.9: Comparison of the normalized activation length with the equality in distribution result
fromCorollary4.21 and the formula for themean fromCorollary 4.5. Plotted aremeans and stds esti-
matedwith respect to the distribution of parameters / random variablesΞl,i(N(0, 1),K) averaged
over 100, 000 initializations, and a numerically evaluated formula for the mean from Corollary 4.5.
All layers had 10 neurons. The lines for themean and areas for the std overlap. Note that there is no
std for the formula in the plot.

‖W(l)
x(l−1)‖. Then ‖x(l′)‖2 equals

‖x(l′)‖2 = ‖W(l′)
x(l

′−1)‖2 =

∥∥∥∥∥W(l′) x(l
′−1)

‖x(l′−1)‖

∥∥∥∥∥
2

‖x(l′−1)‖2

=

∥∥∥∥∥W(l′) x(l
′−1)

‖x(l′−1)‖

∥∥∥∥∥
2
∥∥∥∥∥W(l′−1) x(l

′−2)

‖x(l′−2)‖

∥∥∥∥∥
2

‖x(l′−2)‖2 + 1


= · · · = ‖x(0)‖2

l′∏
l=1

∥∥∥∥∥W(l) x(l−1)

‖x(l−1)‖

∥∥∥∥∥
2

+
l′∑

j=2

 l′∏
l=j

∥∥∥∥∥W(l) x(l−1)

‖x(l−1)‖

∥∥∥∥∥
2
 ,

wherewemultiplied and divided ‖W(l)
x(l−1)‖2 by ‖x(l−1)‖2 at each step. Using the approach from

Theorem 4.3, more specifically equations (4.10), (4.12) and (4.13), with u(l) = x(l)/‖x(l)‖, implying
that cos γx(l),u(l) = 1,

A(l′) =
1

nl
‖x(l′)‖2 d

= ‖x(0)‖2 1

nl′

l′∏
l=1

(
c

nl−1

nl∑
i=1

Ξ2
l,i

)
+

1

nl′

l′∑
j=2

 l′∏
l=j

(
c

nl−1

nl∑
i=1

Ξ2
l,i

)
= ‖x(0)‖2 1

n0

l′∏
l=1

(
c

nl

nl∑
i=1

Ξ2
l,i

)
+

l′∑
j=2

 1

nj−1

l′∏
l=j

(
c

nl

nl∑
i=1

Ξ2
l,i

) ,
where Ξl,i = Ξl,i(N(0, 1),K) is the largest order statistic in a sample of K standard Gaussian
random variables, and stochastic independence of variablesΞl,i follows from Theorem 4.3.
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Corollary 4.5 (Moments of the activation length). Consider a maxout network with the settings of Sec-
tion 4.2. Let x ∈ Rn0 be any input into the network. Then, for the moments of the normalized activation
length, the following results hold.

Mean:

E
[
A(l′)

]
= ‖x(0)‖2 1

n0
(cM)l

′
+

l′∑
j=2

(
1

nj−1
(cM)l

′−j+1

)
.

Variance:

Var[A(l′)] ≤ 2
‖x(0)‖4

n20
c2l

′
K2l′ exp

{
l′∑

l=1

4

nlK

}
.

Moments of the order t ≥ 2:

E
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≤ 2t−1 ‖x(0)‖2t

nt0
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′
Ktl′ exp
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nlK
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 ,
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)t]
≥ ‖x(0)‖2t
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(cM)tl

′
+

l′∑
j=2

(cM)t(l
′−j+1)

ntj−1

.

where expectation is takenwith respect to the distribution of the networkweights and biases, andM is a con-
stant depending on K that can be computed approximately, see Table 4.9 for the values forK = 2, . . . , 10.

Proof. Mean Taking expectation in Corollary 4.21 and using independence ofΞl,i(N(0, 1),K),

E
[
A(l′)

]
= ‖x(0)‖2 1

n0
(cM)l

′
+

l′∑
j=2

(
1

nj−1
(cM)l

′−j+1

)
, (4.20)

whereM is the secondmoment ofΞl,i(N(0, 1),K), see Table 4.9 for its values forK = 2, . . . , 10.
Moments of the order t ≥ 2 Using Corollary 4.21, we get

E
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)t]

= E

‖x(0)‖2 1
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l′∏
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Ξ2
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)t . (4.21)

Upper bound First, we derive an upper bound on (4.21). Notice that all arguments in (4.21) are
positive except for a zero measure set of Ξl,i ∈ R

∑l′
l=1 nl . According to the power mean inequality,
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for any x1, . . . , xn ∈ R, x1, . . . , xn > 0 and any t ∈ R, t > 1, (x1 + · · · + xn)
t ≤ nt−1(xt1 +

· · · + xtn). Using the power mean inequality first on the whole expression and then on the second
summand,

E
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(4.22)

Using independence ofΞl,i, (4.22) equals
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nt0
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Upper-bounding the largest order statisticwith the sumof squared standardGaussian randomvari-
ables, we get that

∑nl
i=1 Ξ

2
l,i ≤ χ2

nlK
. Hence,
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(4.23)

Using the formula fornoncentralmoments of the chi-squareddistributionand1+x ≤ ex, ∀x ∈
R,

ct

ntl
E
[(
χ2
nlK

)t]
=
ct

ntl
(nlK) (nlK + 2) · · · (nlK + 2t− 2)

= ctKt · 1 ·
(
1 +

2
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)
· · ·
(
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2t− 2

nlK

)
≤ ctKt exp

{
t−1∑
i=0

2i

nlK

}
≤ ctKt exp

{
t2

nlK

}
,

where we used the formula for calculating the sum of consecutive numbers
∑t−1

i=1 i = t(t − 1)/2.
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Using this result in (4.23), we get the final upper bound
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 .

Lower bound Using that arguments in (4.21) are non-negative and t ≥ 1, we can lower bound
the power of the sumwith the sum of the powers and get,

E
[(
A(l′)

)t]

≥ ‖x(0)‖2t

nt0

l′∏
l=1

(
ct

ntl
E

[(
nl∑
i=1

Ξ2
l,i

)t])
+

l′∑
j=2

 1

ntj−1

l′∏
l=j

(
ct

ntl
E

[(
nl∑
i=1

Ξ2
l,i

)t])
≥ ‖x(0)‖2t

nt0

l′∏
l=1

(
ct

ntl

(
nl∑
i=1

E
[
Ξ2
l,i

])t)
+

l′∑
j=2

 1

ntj−1

l′∏
l=j

(
ct

ntl

(
nl∑
i=1

E
[
Ξ2
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where we used the linearity of expectation in both expressions and Jensen’s inequality in the last
line. Using thatE[(Ξl,i(N(0, 1),K))2] = M, see Table 4.9, we get

E
[(
A(l′)

)t]
≥ ‖x(0)‖2t

nt0
(cM)tl

′
+

l′∑
j=2

(cM)t(l
′−j+1)

ntj−1

. (4.24)

Variance We can use an upper bound on the secondmoment as an upper bound on the variance.

Remark 4.22 (Zero bias). Similar results can be obtained for the zero bias case and would result
in the same bounds without the second summand. For the proof one would work directly with the
vectors x(l), without defining the vectors x(l), and to obtain the equality in distribution one would
use Remark 4.17.

4.G Expected number of linear regions

Here we prove the result from Section 4.5.1.

Corollary 4.6 (Value for Cgrad). Consider a maxout network with the settings of Section 4.2. Assume
that the biases are independent of the weights but otherwise initialized using any approach. Consider the
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pre-activation feature ζz,k of a unit z = 1, . . . , N . Then, for any t ∈ N,

(
sup

x∈Rn0

E
[
‖∇ζz,k(x)‖t

]) 1
t

≤ n
− 1

2
0 max

{
1, (cK)

L−1
2

}
exp

{
t

2

(
L−1∑
l=1

1

nlK
+ 1

)}
.

Proof. Distribution of∇ζz,k is the same as the distribution of the gradient with respect to the net-
work input∇Ñ1(x) in a maxout network that has a single linear output unit and L̃ = l(z) layers,
where l(z) is the depth of a unit z. Therefore, we will consider (supx∈Rn0 E[‖∇Ñ1(x)‖2t])1/2t.
Notice that since nL̃ = 1,∇Ñ1(x) = JÑ (x)T = JÑ (x)Tu for a 1-dimensional vector u = (1).
Hence,

‖∇Ñ1(x)‖ = sup
∥u∥=1,u∈Rn

L̃

‖JÑ (x)Tu‖ = ‖JÑ (x)T ‖, (4.25)

where the matrix norm is the spectral norm. Using that a matrix and its transpose have the same
spectral norm, (4.25) equals

‖JÑ (x)‖ = sup
∥u∥=1,u∈Rn0

‖JÑ (x)u‖.

Therefore, we need to upper bound

(
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where we used Jensen’s inequality.
Now we can use an upper bound on E[‖JÑ (x)u‖2t] from Corollary 4.2, which holds for any

x,u ∈ Rn0 , ‖u‖ = 1, and thus holds for the suprema. Recalling that nL̃ = 1, we get
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Taking themaximum over L̃ ∈ {1, . . . , L}, the final upper bound is

n
− 1

2
0 max

{
1, (cK)

L−1
2

}
exp

{
t

2

(
L−1∑
l=1

1

nlK
+ 1

)}
.

Now we provide an updated upper bound on the number of r-partial activation regions from
Tseran and Montúfar (2021, Theorem 9). In this bound, the case r = 0 corresponds to the num-
ber of linear regions. For a detailed discussion of the activation regions of maxout networks and
their differences from linear regions, see Tseran andMontúfar (2021). Since the proof of Tseran and
Montúfar (2021, Theorem 9) only usesCgrad for t ≤ n0, we obtain the following statement.

Theorem4.23 (Upperboundon the expectednumber of partial activation regions). Consider amax-
out network with the settings of Section 4.2 withN maxout units. Assume that the biases are independent
of the weights and initialized so that:

1. Every collection of biases has a conditional density with respect to Lebesgue measure given the values of
all other weights and biases.

2. There exists Cbias > 0 so that for any pre-activation features ζ1, . . . , ζt from any neurons, the condi-
tional density of their biases ρb1,...,bt given all the other weights and biases satisfies

sup
b1,...,bt∈R

ρb1,...,bt(b1, . . . , bt) ≤ Ct
bias.

Fix r ∈ {0, . . . , n0}. Let Cgrad = n
−1/2
0 max{1, (cK)(L−1)/2} exp{n0/2(

∑L−1
l=1 1/(nlK) + 1)}

and T = 25CgradCbias. Then, there exists δ0 ≤ 1/(2CgradCbias) such that for all cubes C ⊆ Rn0 with
side length δ > δ0 we have

E[# r-partial activation regions ofN inC]
vol(C)

≤


(
rK
2r

)(
N
r

)
KN−r, N ≤ n0

(TKN)n0(n0K
2n0

)
(2K)rn0!

, N ≥ n0

.

Here the expectation is takenwith respect to thedistributionofweights andbiases inN . Of particular interest
is the case r = 0, which corresponds to the number of linear regions.

4.H Expected curve length distortion

In this section, we prove the result from Section 4.5.2.
LetM be a smooth 1-dimensional curve in Rn0 . Fix a smooth unit speed parameterization of

M = γ([0, 1])with γ : R → Rn0 , γ(τ) = (γ1(τ), . . . , γn0(τ)). Then, parametrization of the curve
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N (M) is given by amapping Γ := N ◦ γ,Γ : R → RnL . Thus, the length ofN (M) is

len(N (M)) =

∫ 1

0
‖Γ′(τ)‖dτ.

Notice that the input-output Jacobian of maxout networks is well defined almost everywhere
because for any neuron, using that the biases are independent from weights, and the weights
are initialized from a continuous distribution, P (k′ = argmaxk∈[K]{W

(l)
i,kx

(l−1) + b
(l)
i,k}, k

′′ =

argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k}) = 0, i = 1, . . . , nL−1. Hence, Γ′(τ) = JN (γ(τ))γ′(τ), where

we used the chain rule, and we can employ the following lemma from Hanin et al. (2021). We state
it here without proof which uses Tonelli’s theorem, power mean inequality and chain rule.

Lemma 4.24 (Connection between the length of the curve and ‖JN (x)u‖, Hanin et al. 2021,
Lemma C.1). For any integer t ≥ 0,

E
[
len(N (M))t

]
≤
∫ 1

0
E
[
‖JN (γ(τ))γ′(τ)‖t

]
dτ = E

[
‖JN (x)u‖t

]
,

whereu ∈ Rn0 is a unit vector.

Nowwe are ready to proof Corollary 4.7.

Corollary 4.7 (Expected curve length distortion). Consider a maxout network with the settings of Sec-
tion 4.2. Assume that the biases are independent of theweights but otherwise initialized using any approach.
LetM be a smooth 1-dimensional curve of unit length inRn0 . Then, the following upper bounds on themo-
ments of len(N (M)) hold:

E [len(N (M))] ≤
(
nL
n0

) 1
2

(cL)
L−1
2 ,

Var [len(N (M))] ≤ nL
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2 exp

{
t2
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(
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1

nlK
+

1

nL

)}
,

whereL is a constant depending onK , see Table 4.9 in Section 4.D for values forK = 2, . . . , 10.

Proof. By Lemma 4.24,

E
[
len(N (M))t

]
≤ E

[
‖JN (x)u‖t

]
≤
(
E
[
‖JN (x)u‖2t

]) 1
2 ,

where we used Jensen’s inequality to obtain the last upper bound. Hence, using Corollary 4.2, we
get the following upper bounds on themoments on the length of the curve.
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Mean
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Variance
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Moments of the order t ≥ 3

E
[
len(N (M))t

]
≤
(
E
[
‖JN (x)u‖2t

]) 1
2 ≤

(
nL
n0

) t
2

(cK)
t(L−1)

2 exp

{
t2

2

(
L−1∑
l=1

1

nlK
+

1

nL

)}
.

4.I NTK

Here we prove the results from Section 4.5.3.

Corollary 4.9 (On-diagonal NTK). Consider a maxout network with the settings of Section 4.2. Assume
that nL = 1 and that the biases are initialized to zero and are not trained. Assume that S ≤ c ≤ L, where
the constants S,L are as specified in Table 4.9. Then,

‖x(0)‖2 (cS)
L−2

n0
P ≤ E[KN (x,x)] ≤ ‖x(0)‖2 (cL)

L−2ML−1

n0
P,

E[KN (x,x)2] ≤ 2PPW (cK)2(L−2) ‖x(0)‖4

n20
exp
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j=1

4

njK
+ 4

 ,

whereP =
∑L−1

l=0 nl,PW =
∑L

l=0 nlnl−1, andM is as specified in Table 4.9.

Proof. Under the assumption that biases are not trained, on-diagonal NTK of a maxout network is

KN (x,x) =
L∑
l=1

nl∑
i=1

K∑
k=1

nl−1∑
j=1

 ∂N
∂W

(l)
i,k,j

(x)

2

.

Since in maxout network for all k-s except k = k′ = argmaxk∈[K]{W
(l)
i,kx

(l−1) + b
(l)
i,k} the deriva-

tives with respect to the weights and biases are zero, on-diagonal NTK equals
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nl−1∑
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.
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Notice that sincewe assumed a continuous distribution over the networkweights and the biases are
zero, the partial derivatives are defined everywhere except for the set of measure zero.

Part I. Kernel meanE[KN (x,x)] Firstly, using the chain rule, a partial derivative with respect
to the network weight is

∂N
∂W

(l)
i,k′,j

(x) =
∂N
∂x

(l)
i

(x)x
(l−1)
j = JN (x(l))eix

(l−1)
j .

Recall that we assumed nL = 1. Therefore, we need to consider (∂N (x)∂W
(l)
i,k′,j)

2 =

‖JN (x(l))u‖2(x(l−1)
j )2, where u = ei. Combining Theorem 4.1 and Corollary 4.21 in com-

bination with Remark 4.22 for the zero-bias case and using the independence of the random
variables in the expressions,
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) ,
(4.26)

wherewe treat the (l−1)th layer as if it has one unit whenwe use the normalized activation length
result. Then, using Corollaries 4.2 and 4.5,

E
[
‖JN (x(l))u‖2
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)2]
≤ ‖x(0)‖2 c
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n0nl
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Taking the sum, we get

E[KN (x,x)] = E[KW ] = E
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L−2ML−1
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P,

whereP =
∑L−1

l=0 nl denotes the number of neurons in the network up to the last layer, but includ-
ing the input neurons. Here we used that forK ≥ 2, bothL,M ≥ 1, see Table 4.9. Similarly,

E[KW ] ≥
L∑
l=1

nl∑
i=1
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j=1

‖x(0)‖2 c
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n0nl
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P.

Here we used that forK ≥ 2, S ≤ 1 andM ≥ 1, see Table 4.9.
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Part II. SecondmomentE[KN (x,x)2] Using equation (4.26) with Corollaries 4.2 and 4.5,
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Notice that all summands are non-negative. Then, using AM-QM inequality,
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wherePW =
∑L

l=0 nlnl−1 denotes the number of all weights in the network.

4.J Experiment details and additional experiments

4.J.1 Experiments with SGD and Adam from Section 4.6

In this subsection, we providemore details on the experiments presented in Section 4.6. The imple-
mentation of the key routines is available at https://github.com/hanna-tseran/maxout_
expected_gradients. Experiments were implemented in Python using TensorFlow (Martín
Abadi et al., 2015), numpy (Harris et al., 2020) and mpi4py (Dalcin et al., 2011). The plots were
created using matplotlib (Hunter, 2007). We conducted all training experiments from Section 4.6
on a GPU cluster with nodes having 4Nvidia A100 GPUswith 40GB ofmemory. Themost extensive
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experiments were running for one day on one GPU. Experiment in Figure 4.2 was run on a CPU
cluster that uses Intel Xeon IceLakeSP processors (Platinum 8360Y) with 72 cores per node and
256 GB RAM. All other experiments were executed on the laptop ThinkPad T470 with Intel Core
i5-7200U CPUwith 16 GB RAM.

Training experiments Now we discuss the training experiments. We use MNIST (LeCun and
Cortes, 2010), Iris (Fisher, 1936), FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), CIFAR-
10 and CIFAR-100 datasets (Krizhevsky et al., 2009). All maxout networks have the maxout rank
K = 5. Weights are sampled fromN(0, c/fan-in) in fully-connected networks andN(0, c/(k2 ·
fan-in)), where k is the kernel size, in CNNs. The biases are initialized to zero. ReLU networks are
initialized using He approach (He et al., 2015), meaning that c = 2. All results are averaged over 4
runs. We do not use any weight normalization techniques, such as batch normalization (Ioffe and
Szegedy, 2015). We performed the dataset split into training, validation and test dataset and report
the accuracy on the test set, while the validation setwas used only for picking the hyper-parameters
and was not used in training. The mini-batch size in all experiments is 32. The number of training
epochs was picked by observing the training set loss and choosing the number of epochs for which
the loss has converged. The exception is the SVHNdataset, forwhichwe observe the double descent
phenomenon and stop training after 150 epochs.

Network architecture Fully connected networks have 21 layers. Specifically, their architecture is

[5×fc64, 5×fc32, 5×fc16, 5×fc8, out],

where “5×fc64”means that there are5 fully-connected layerswith 64neurons, and “out” stands for
the output layer that has the number of neurons equal to the number of classes in a dataset. CNNs
have a VGG-19-like architecture (Simonyan and Zisserman, 2015) with 20 or 16 layers, depending
the input size. The 20-layer architecture is

[2×conv64, mp, 2×conv128, mp, 4×conv256, mp, 4×conv512, mp, 4×conv512, mp,

2×fc4096, fc1000, out],

where “conv64” stands for a convolutional layerwith 64 neurons and “mp” for amax-pooling layer.
The kernel size in all convolutional layers is 3 × 3. Max-pooling uses 2 × 2 pooling windows with
stride 2. Such architecture is used for datasets with the images that have the side length greater or
equal to 32: CIFAR-10, CIFAR-100 and SVHN. The 16-layer architecture is used for images with the
smaller image size: MNIST and Fashion MNIST. This architecture does not have the last convolu-
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tional block of the 20-layer version. Concretely, it has the following layers:

[2×conv64, mp, 2×conv128, mp, 4×conv256, mp, 4×conv512, mp, 2×fc4096, fc1000, out],

Max-pooling initialization To account for the maximum in max-pooling layers, a maxout layer
appearing after amax-pooling layer is initialized as if itsmaxout rankwasK×m2, wherem2 is the
max-pooling window size. The reason for this is that the outputs of a computational block consist-
ing of amax-poolingwindow and amaxout layer are takingmaxima overK ×m2 linear functions,
max{W1 max{x1, . . . ,xm2} + b1, . . . ,WK max{x1, . . . ,xm2} + bK} = max{f1, . . . , fKm2},
where the fi areKm2 affine functions. Therefore, we initialize the layers that follow max-pooling
layers using the criterion formaxout rankm2×K instead ofK . In our experiments,K = 5,m = 2,
andm2 ×K = 20. Hence, for such layers, we use the constant c = 1/M = 0.26573, whereM is
computed forK = 20using the formula fromRemark4.14 in Section4.D.All other layers that donot
followmax-pooling layers are initialized as suggested in Section 4.4. We observe that max-pooling
initialization often leads to slightly higher accuracy.

Data augmentation There is no data augmentation for fully connected networks. For convolu-
tional networks, forMNIST, FashionMNIST and SVHNdatasetswe perform random translation, ro-
tation and zoom of the input images. For CIFAR-10 and CIFAR-100, we additionally apply a random
horizontal flip.

Learning rate decay In all experiments, we use the learning rate decay and choose the optimal
initial learning rate for all network and initialization types based on their accuracy on the validation
dataset using grid search. The learning ratewas halved everynth epoch. For SVHN,n = 10, and for
all other datasets, n = 100.

SGDwithmomentum Weuse SGDwithNesterovmomentum,with themomentumvalue of 0.9.
Specific dataset settings are the following.

• MNIST (fully-connected networks). Networks are trained for 600 epochs. The learning rate is
halved every100 epochs. Learning rates: maxout networkswithmaxout initialization: 0.002,
maxout networks with c = 0.1: 0.002, maxout networks with c = 2: 2 × 10−7, ReLU net-
works: 0.002.

• Iris. Networks are trained for500 epochs. The learning rate is halved every100 epochs. Learn-
ing rates: maxout networks withmaxout initialization: 0.01, maxout networks with c = 0.1:
0.01, maxout networks with c = 2: 4× 10−8, ReLU networks: 0.005.

• MNIST (convolutional networks). Networks are trained for 800 epochs. The learning rate is
halved every100 epochs. Learning rates: maxout networkswithmaxout initialization: 0.009,
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maxout networks with max-pooling initialization: 0.009, maxout networks with c = 0.1:
0.009, maxout networks with c = 2: 8× 10−6, ReLU networks: 0.01.

• Fashion MNIST. Networks are trained for 800 epochs. The learning rate is halved every 100
epochs. Learning rates: maxout networks with maxout initialization: 0.004, maxout net-
works with max-pooling initialization: 0.006, maxout networks with c = 0.1: 0.4, maxout
networks with c = 2: 5× 10−6, ReLU networks: 0.01.

• CIFAR-10. Networks are trained for1000 epochs. The learning rate is halved every100 epochs.
Learning rates: maxout networks with maxout initialization: 0.004, maxout networks with
max-pooling initialization: 0.005, maxout networks with c = 0.1: 0.5, maxout networks
with c = 2: 8× 10−8, ReLU networks: 0.009.

• CIFAR-100. Networks are trained for 1000 epochs. The learning rate is halved every 100

epochs. Learning rates: maxout networks with maxout initialization: 0.002, maxout
networks with max-pooling initialization: 0.002, maxout networks with c = 0.1: 0.002,
maxout networks with c = 2: 8× 10−5, ReLU networks: 0.006.

• SVHN. Networks are trained for 150 epochs. The learning rate is halved every 10 epochs.
Learning rates: maxout networks with maxout initialization: 0.005, maxout networks with
max-pooling initialization: 0.005, maxout networks with c = 0.1: 0.005, maxout networks
with c = 2: 7× 10−5, ReLU networks: 0.005.

Adam We use Adam optimizer Kingma and Ba (2015) with default TensorFlow parameters β1 =

0.9, β2 = 0.999. Specific dataset settings are the following.

• MNIST (fully-connected networks). Networks are trained for 600 epochs. The learning rate
is halved every 100 epochs. Learning rates: maxout networks with maxout initialization:
0.0008, maxout networks with c = 2: 0.0007, ReLU networks: 0.0008.

• MNIST (convolutional networks). Networks are trained for 800 epochs. The learning rate
is halved every 100 epochs. Learning rates: maxout networks with maxout initialization:
0.0001, maxout networks with max-pooling initialization: 0.00006, maxout networks with
c = 2: 0.00004, ReLU networks: 0.00009.

• Fashion MNIST. Networks are trained for 1000 epochs. The learning rate is halved every 100
epochs. Learning rates: maxout networks with maxout initialization: 0.00007, maxout net-
works with max-pooling initialization: 0.00008, maxout networks with c = 2: 0.00005,
ReLU networks: 0.0002.

• CIFAR-10. Networks are trained for1000 epochs. The learning rate is halved every100 epochs.
Learning rates: maxoutnetworkswithmaxout initialization: 0.00009,maxoutnetworkswith
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Table 4.10: Ablation study of the value of c. Reported is accuracy on the test set formaxout networks
with maxout rankK = 5 trained using SGD with Nesterov momentum. Observe that the optimal
value of c is close to c = 0.55555which is suggested in Section 4.4.

VALUE OF c
FULLY-CONNECTED CONVOLUTIONAL

MNIST Iris MNIST CIFAR-10 CIFAR-100
Fashion
MNIST

0.01 11.35±0.00 30±0.00 11.35±0.00 10±0.00 1±0.00 10±0.00

0.05 11.35±0.00 30±0.00 11.35±0.00 10±0.00 1±0.00 10±0.00

0.07 11.35±0.00 31.67±2.89 11.35±0.00 10±0.00 1±0.00 10±0.00

0.1 11.35±0.00 30±0.00 11.35±0.00 10±0.00 1±0.00 10±0.00

0.2 11.35±0.00 30±0.00 99.56±0.03 10±0.00 1±0.00 93.21±0.11

0.3 97.63±0.16 60.83±30.86 99.55±0.02 90.97±0.11 64.71±0.25 93.41±0.11

0.4 97.89±0.12 85±10.67 99.6±0.03 91.15±0.07 64.9±0.33 93.21±0.11

0.5 97.82±0.09 92.5±1.44 99.56±0.05 91.33±0.13 65.48±0.43 93.5±0.15

0.55555 97.92±0.18 90.83±3.63 99.57±0.07 91.4±0.22 65.38±0.32 93.51±0.08

0.6 97.77±0.17 90.83±1.44 99.59±00.02 91.69±0.25 65.58±0.24 93.54±0.13

0.7 97.91±0.11 90±0.00 54.69±44.89 50.83±40.83 66.26±0.42 93.62±0.23

0.8 75.82±38.12 30±0.00 9.8±0.00 10±0.00 1±0.00 72.66±36.17

0.9 75.94±38.18 30±0.00 9.8±0.00 10±0.00 1±0.00 10±0.00

1 97.89±0.10 30±0.00 9.8±0.00 10±0.00 1±0.00 10±0.00

1.5 9.8±0.00 30±0.00 9.8±0.00 10±0.00 1±0.00 10±0.00

2 9.8±0.00 30±0.00 9.8±0.00 10±0.00 1±0.00 10±0.00

10 9.8±0.00 30±0.00 9.8±0.00 10±0.00 1±0.00 10±0.00

max-pooling initialization: 0.00009, maxout networks with c = 2: 0.00005, ReLU networks:
0.0001.

• CIFAR-100. Networks are trained for 1000 epochs. The learning rate is halved every 100

epochs. Learning rates: maxout networks with maxout initialization: 0.00008, maxout
networks with max-pooling initialization: 0.00009, maxout networks with c = 2: 0.00005,
ReLU networks: 0.00009.

4.J.2 Ablation analysis

Table 4.10 shows the results of the additional experiments that use SGDwith Nesterov momentum
for more values of c andK = 5. From this, we see that the recommended value of c from Section
4.4 closelymatches the empirical optimumvalue of c. Note that herewe have fixed the learning rate
across choices of c. More specifically, the following learning rates were used for the experiments
with different datasets. MNIST with fully-connected networks: 0.002; Iris: 0.01; MNIST with con-
volutional networks: 0.009; CIFAR-10: 0.004; CIFAR-100: 0.002; Fashion MNIST: 0.004. These are
the learning rates reported for the SGDwith Nesterovmomentum experiments in Section 4.J.1.
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Table 4.11: Accuracy on the test set for maxout networks with maxout rankK = 5 that use batch
normalization trained using SGDwith Nesterov momentum. Observe that the optimal value of c is
close to c = 0.55555which is suggested in Section 4.4.

VALUE OF c
CONVOLUTIONAL

MNIST CIFAR-10 CIFAR-100 FashionMNIST
10−6 11.35±0.00 10±0.00 1±0.00 10±0.00

10−5 11.35±0.00 10±0.00 1±0.00 10±0.00

10−4 99.33±0.09 10±0.00 1±0.00 90.89±0.27

0.001 99.35±0.05 74.85±3.29 38.95±4.46 89.78±1.2

0.01 99.32±0.05 75.72±4.94 37.03±4.19 90.51±0.19

0.1 99.36±0.04 77.16±1.84 41.64±1.53 90.66±0.3

0.55555 99.41±0.07 77.68±1.07 42.±1.51 90.89±0.23

1 99.39±0.04 79.26±0.76 43.93±1.04 90.93±0.36

10 99.35±0.02 75.82±1.05 43.17±0.28 90.14±0.18

100 98.83±0.07 66.23±1.69 35.67±0.88 86.99±0.39

1000 97.69±0.31 50.97±2.28 21.95±0.59 80.93±0.92

104 95.11±1.40 43.81±1.80 19.87±1.29 76.02±1.44

105 93.09±1.88 39.27±2.73 14.28±2.17 73.71±1.55

106 87.63±1.86 40.27±0.92 14.91±0.9 71.71±3.3

4.J.3 Batch normalization

Table 4.11 reports test accuracy for maxout networks with batch normalization trained using SGD
with Nesterov momentum for various values of c. The implementation of the experiments is sim-
ilar to that described in Section 4.J.1, except for the following differences: The networks use batch
normalization after each layer with activations; The width of the last fully connected layer is 100,
and all other layers of the convolutional networks are 8 times narrower; The learning rate is fixed
at 0.01 for all experiments. We use the default batch normalization parameters from TensorFlow.
Specifically, the momentum equals 0.99 and ϵ = 0.001. We observe that our initialization strategy
is still beneficial when training with batch normalization.

4.J.4 Comparison of maxout and ReLU networks in terms of the number of param-
eters

We should point out that what is a fair comparison is not as straightforward as matching the pa-
rameter count. In particular, wider networks have the advantage of having a higher dimensional
representation. A fully connected network will not necessarily perform as well as a convolutional
network with the same number of parameters, and a deep and narrow network will not necessarily
perform as well as a wider and shallower network with the same number of parameters.

Nevertheless, to add more details to the results, we perform experiments using ReLU networks
that have as many parameters as maxout networks. See Tables 4.12 and 4.13 for results. We modify
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network architectures described in Section 4.J.1 for these experiments in the following way.
In the first experiment, we use fully connected ReLU networks 5 times wider than maxout net-

works. For convolutional networks, however, the resulting CNNs with ReLU activations would be
extremely wide, so we only made it 4 and 3 times wider depending on the depth of the network. In
our setup, a 5 times wider CNN network would need to be trained for longer than 24 hours, which
is difficult in our experiment environment. Maxout networks only required a much shorter time of
around 10 hours, which indicates possible benefits in some cases.

In the second experiment, we consider ReLUnetworks that are 5 times deeper thanmaxout net-
works. More specifically, fully-connected ReLU networks have the following architecture:

[25×fc64, 25×fc32, 25×fc16, 25×fc8, out],

convolutional networks used for MNIST and FashionMNIST datasets have the following layers:

[10×conv64, mp, 10×conv128, mp, 20×conv256, mp, 20×conv512, mp, 10×fc4096,

5×fc1000, out],

and architecture of the convolutional networks used for CIFAR-10 and CIFAR-100 datasets is

[10×conv64, mp, 10×conv128, mp, 20×conv256, mp, 20×conv512, mp, 20×conv512,

mp, 10×fc4096, 5×fc1000, out].

As expected,wider networks do better. On the other hand, deeper ReLUnetworks of the samewidth
domuchworse thanmaxout networks.

We performed a grid search based on the performance of the model on the validation dataset
to determine the optimal learning rate for each ReLU network. Specifically, the following learning
rates were used. In the experiment with ReLU networks that are wider than maxout networks,
MNIST (fully-connected networks): 0.003, Iris: 0.009, MNIST (convolutional networks): 0.01,
Fashion MNIST: 0.008, CIFAR-10: 0.007, CIFAR-100: 0.008. In the experiment with ReLU networks
that are deeper than maxout networks, MNIST (fully-connected networks): 0.00002, Iris: 0.0006,
MNIST (convolutional networks): 0.00008, FashionMNIST: 0.0008, CIFAR-10: 0.00008, CIFAR-100:
0.00008.

4.J.5 Comparison of maxout and ReLU networks with dropout

One of themotivations for introducingmaxout units in Goodfellow et al. (2013)was to obtain better
model averaging by techniques such as dropout (Srivastava et al., 2014). The original paper (Good-
fellow et al., 2013) conducted experiments comparing maxout and tanh. In Table 4.14, we show
the results of an experiment demonstrating that in terms of allowing for a better approximation
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Table4.12: Accuracyon the test set fornetworks trainedusingSGDwithNesterovmomentum. Fully-
connected ReLU networks are 5 timeswider than fully-connectedmaxout networks. Convolutional
ReLU networks are 4 times wider than convolutional maxout networks for the MNIST and Fashion
MNIST datasets and 3 times wider for the CIFAR-10 and CIFAR-100 datasets. All networks have the
same number of layers.

MAXOUT RELU
Maxout init He init

VALUE OF c 0.55555 2

FULLY-CONNECTED

MNIST 97.8±0.15 98.11±0.02

Iris 91.67±3.73 92.5±2.76

CONVOLUTIONAL

MNIST 99.59±0.04 99.55±0.01

FashionMNIST 93.49±0.13 93.71±0.19

CIFAR-10 91.21±0.13 91.24±0.21

CIFAR-100 65.39±0.39 66±0.45

of model averaging based on dropout, maxout networks compare favorably against ReLU. This in-
dicates thatmaxout units can indeed bemore suitable for trainingwith dropout when properly ini-
tialized. We point out that several contemporary architectures often rely on dropout, such as trans-
formers (Vaswani et al., 2017).

4.J.6 Gradient values during training

The goal of the suggested initialization is to ensure that the training can start, while the gradients
might vary during training. Nevertheless, it is natural to also consider the gradient values during
training for a fuller picture. Hence, we demonstrate the gradients during training in Figures 4.10
and 4.11.
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Table 4.13: Accuracy on the test set for networks trainedusing SGDwithNesterovmomentum. ReLU
networks are 5 times deeper thanmaxout networks but have the samewidth.

MAXOUT RELU
Maxout init He init

VALUE OF c 0.55555 2

FULLY-CONNECTED

MNIST 97.8±0.15 63.47±33.32

Iris 91.67±3.73 75.83±11.15

CONVOLUTIONAL

MNIST 99.59±0.04 99.4±0.05

FashionMNIST 93.49±0.13 93.25±0.11

CIFAR-10 91.21±0.13 73.25±3.19

CIFAR-100 65.39±0.39 17.97±4.57

Table 4.14: Accuracy on theMNIST dataset of fully-connected networks trainedwith dropoutwith a
rate of 0.5 and of average predictions of several networks inwhich half of theweights weremasked.
All results were averaged over 4 runs. Maxout rankK = 5. Networks had 3 layers with 128, 64, and
32 neurons. Maxout networks were initialized using the initialization suggested in Section 4.4, and
ReLU networks using He initialization with Gaussian distribution (He et al., 2015). ReLU networks
with dropout give results closer to a single model, whereas maxout networks with dropout give re-
sults closer to the average of a larger number of models. This indicates that maxout units are more
effective for obtaining better model averaging using dropout.

DROPOUT 1MODEL
AVERAGE OF
2MODELS

AVERAGE OF
3MODELS

AVERAGE OF
4MODELS

ReLU 97.04±0.14 97.09±0.17 97.73±0.08 97.87±0.04 97.94±0.08

Maxout 98.37±0.09 97.66±0.04 98.03±0.05 98.15±0.08 98.19±0.06
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Figure 4.10: Expected value and interquartile range of the squared gradients (∂N/∂Wi,k′,j)
2 of a

fully-connectedmaxout network during training on theMNIST dataset. Weights are sampled from
N(0, c/fan-in), and biases are initialized to zero. The maxout rankK is 5. We compute the mean
and quartiles for 4 training runs using one random input that is fixed at the start of the training. The
gradient values increase at the beginning of the training and then remain stable during training for
all plotted initializations. Note that red and green lines corresponding to the values of c = 0.55555
and c = 1, respectively, overlap. Similarly, blue and orange lines corresponding to c = 0.01 and
c = 0.1 overlap. Results for c = 2 and c = 10 are not shown in the plot since their gradients
explode and go to NaN after the training starts.

Figure4.11: Expectedvalueand interquartile rangeof the squaredgradients (∂N/∂Wi,k′,j)
2 ofmax-

out networks during training. Weights are sampled fromN(0, c/fan-in), where c = 0.55555, and
biases are initialized to zero. The maxout rankK is 5. We use SGD with momentum and compute
the mean and quartiles for 4 training runs using one random input that is fixed at the start of the
training. All other experiment parameters are as described in Section 4.J.1. The gradient values in-
crease at the beginning of the training and then remain stable during training for all datasets.
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