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Abstract

Learning with neural networks depends on the particular parametrization of the functions repre-
sented by the network, that is, the assignment of parameters to functions. It also depends on the
identity of the functions, which get assigned typical parameters at initialization, and, later, the pa-
rameters that arise during training. The choice of the activation function is a critical aspect of the
network design that influences these function properties and requires investigation. This thesis fo-
cuses on analyzing the expected behavior of networks with maxout (multi-argument) activation
functions. On top of enhancing the practical applicability of maxout networks, these findings add
to the theoretical exploration of activation functions beyond the common choices. We believe this
work can advance the study of activation functions and complicated neural network architectures.

We begin by taking the number of activation regions as a complexity measure and showing that
the practical complexity of deep networks with maxout activation functions is often far from the
theoretical maximum. This analysis extends the previous results that were valid for deep neural
networks with single-argument activation functions such as ReLU. Additionally, we demonstrate
that a similar phenomenon occurs when considering the decision boundaries in classification tasks.
We also show that the parameter space has a multitude of full-dimensional regions with widely
different complexity and obtain nontrivial lower bounds on the expected complexity. Finally, we
investigate different parameter initialization procedures and show that they can increase the speed
of the gradient descent convergence in training.

Further, continuing the investigation of the expected behavior, we study the gradients of a max-
out network with respect to inputs and parameters and obtain bounds for the moments depending
on the architecture and the parameter distribution. We observe that the distribution of the input-
output Jacobian depends on the input, which complicates a stable parameter initialization. Based
on the moments of the gradients, we formulate parameter initialization strategies that avoid van-
ishing and exploding gradients in wide networks. Experiments with deep fully-connected and con-
volutional networks show that this strategy improves SGD and Adam training of deep maxout net-
works. In addition, we obtain refined bounds on the expected number of linear regions, results on
the expected curve length distortion, and results on the NTK. As the result of the research in this the-
sis, we develop multiple experiments and helpful components and make the code for them publicly
available.
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Chapter 1

Introduction

In this thesis, we advance the line of analysis proposed by Hanin and Rolnick (2019a,b), where the
focus is on the expected behavior of the deep neural networks. We consider feedforward neural
networks with ng inputs, L layers of widths ny,...,nr, which implement functions of the form
f =1vo¢r_10---0 ¢i. Thel-th hidden layer implements a function ¢;: R™-1 — R™ with
output coordinates, i.e., units, given by trainable affine functions followed by a fixed real-valued
activation function, and ¢: R"2-1 — R™L is a linear output layer. Whereas prior works focus
on single-argument activation functions, we obtain novel results for the previously little-studied
multi-argument maxout activation function (Goodfellow et al), 2013). Concretely, maxout units
compute parametric affine functions followed by a fixed multi-argument activation function of the
form (s1,...,Sx) + max{si,..., Sk} and can be regarded as a natural generalization of ReLUs,
which have a single-argument activation function s — max{0, s}. On top of enhancing the practi-
cal applicability of maxout networks, these findings add to the theoretical exploration of activation
functions beyond the standard choices, such as ReLU. We believe this work can pave the way for
the investigation of multi-argument activation functions and complicated neural network architec-
tures.

For any choice of parameters, maxout networks subdivide their input space into linear regions,
maximal connected subsets of the input space R on which the function f computed by a network
has a constant gradient. We take the number of linear regions as a measure of the complexity of the
function that a network computes and observe that maxout networks can assume widely different
numbers of linear regions with positive probability. We then compute an upper bound on the ex-
pected number of regions and volume given properties of the parameter distribution, covering the
case of zero biases. Further, taking the classification standpoint, we obtain corresponding results for
the decision boundary of maxout (and ReLU) networks, along with bounds on the expected distance
to the decision boundary. Experiments show that the theoretical bounds capture the general behav-
ior. We present algorithms for enumerating the regions of maxout networks and propose parameter

initialization strategies with two types of motivations, one to increase the number of regions, and
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second, to normalize the variance of the activations similar to Glorot and Bengio (2010) and He et al.
(2015), but now for maxout. We observe experimentally that this could improve training in maxout
networks.

We continue with the study of the gradients of maxout networks with respect to the parame-
ters and the inputs by analyzing a directional derivative of the input-output map. We observe that
the distribution of the input-output Jacobian of maxout networks depends on the network input
(in contrast to ReLU networks), which can complicate the stable initialization of maxout networks.
Nevertheless, based on bounds on the moments, we derive an initialization that avoids vanishing
and exploding gradients in wide networks. Experimentally, we show that, compared to other initial-
izations, the suggested approach leads to better performance for fully connected and convolutional
deep networks of standard width trained with SGD or Adam and better or similar performance than
ReLU networks. Additionally, we refine the previous upper bounds on the expected number of linear
regions. We also derive results for the other measure of the complexity of a network, the expected
curve length distortion, observing that it does not grow exponentially with the depth in wide net-
works. Furthermore, we obtain bounds on the maxout neural tangent kernel (NTK), which describes
the evolution of neural networks during the training by gradient descent, suggesting that it might

not converge to a constant when both the width and depth are large.

1.1  Maxout networks

1.1.1 Definition

As stated above, we consider a feedforward neural network N with ng inputs and L layers of widths

n1,...,np, whichimplements a map A/ : R™ — R™ given by a composition of maps

Ni=topr 10061

The [-th hidden layer, [ = 1,...,L — 1 implements a function ¢;: R™-1 — R™. Its output co-
ordinates, i.e., units, are given by trainable affine functions called pre-activation functions ¢ *) (z) :
R™-1 — R™ followed by fixed real-valued activation functions c(!) : R™ — R™. Pre-activation

functions and parametrized by a weight matrix W) € R™*"-1 and a bias vector b!) € R™:
¢O(z) :=whg + bW,

where x € R™~! is a layer input, with * € R™ being a network input. The output layer is given
by a linear function ¢: R"2-1 — R"L_. We denote the total number of hidden units by N = n; +
-+ 4 nr_1. The collection of all trainable parameters is denoted by @ = {IV, b}.

In this thesis, we are interested in the functions parametrized by artificial feedforward neural

networks with maxout units, which can be regarded as a natural generalization of ReLUs.
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Definition 1.1 (ReLU activation). Given an input x € R", where & may be an input or a hidden

layer state, a rectified linear unit (ReLU) implements a function
R" - R; @+~ max{(W,z) + b,0},

where W € R™ and b € R are trainable weights and biases.

Definition 1.2 (Maxout activation). A rank-K maxout unit, introduced by Goodfellow et al! (2013),
computes the maximum of K real-valued parametric affine functions. Concretely, a rank- K maxout

unit with 7 inputs implements a function
R" - R; @+ max{(W,x) + by},
kE[K]

where Wi, € R"and b, € R, k € [K] := {1,..., K}, are trainable weights and biases. The K

arguments of the maximum are called the pre-activation features of the maxout unit.

Arank- K maxout unit can be regarded as a composition of an affine map with K outputs and a
maximum gate. A layer corresponds to the parallel computation of several such units. For instance,

a layer with n inputs and m maxout units computes functions of the form

1) (1)
maxye ] { (W 1, ) + by
R" - R™;, x— : ,
1 1
maXe[K] {(W,S%)k, z) + bgn)k
where now Wi(? and bglk) are the weights and biases of the kth pre-activation feature of the ¢th
maxout unit in the first layer. The situation is illustrated in Figure f.{ for the case of a network with
two inputs, one layer with two maxout units of rank three, and one output layer with a single output

unit.

1.1.2 Significance of maxout network research

Below we outline multiple reasons that motivate the study of maxout networks.

Maxout unit activation functions are multi-argument A maxout unit may be considered a
multi-argument generalization of a ReLU, which computes the maximum of a real-valued affine
function and zero. Since understanding the behavior of multi-argument activation functions is

interesting from the theoretical point of view and can facilitate the design of novel activation

functions, maxout unit activation function analysis can serve as a platform for such investigation.

Potential extension to complicated architectures Some of the modern architectures use multi-

argument activation functions. For instance, graph neural networks (GNNs) employ a maximum
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Figure 1.1: llustration of a simple maxout network with two input units, one hidden layer consisting
of two maxout units of rank 3, and an affine output layer with a single output unit.

aggregation function (Hamilton, 2020), essentially a maxout activation function. Therefore, we be-
lieve that developing the theory and implementation aspects of maxout networks can serve as an

interesting platform for architecture design.

Maxout units are frequently used Even though maxout networks are used less than other pop-
ular activation function choices, such as ReLU activations, they are still frequently used. For in-
stance, there were 2, 010 references mentioning maxout networks since 2022 on Google Scholar as
of 11.06.2023 (Google Scholar, 2023). Moreover, Goodfellow et al! (2013) demonstrated that max-
out networks could perform better than ReLU networks under similar circumstances. Additionally,
maxout networks have been shown to be useful for combating catastrophic forgetting in neural net-
works (Goodfellow et al), 2o1g5). On the other hand, Castaneda et al! (2019) evaluated the perfor-
mance of maxout networks in a big data setting and observed that increasing the width of ReLU
networks is more effective in improving performance than replacing ReLUs with maxout units and
that ReLU networks converge faster than maxout networks. We observe that maxout networks, in
general, and proper initialization strategies for maxout networks, in particular, have not been stud-
ied in the same level of detail as for ReLU networks and that this might resolve some of the problems

encountered in previous maxout network applications.

Mazxout networks solve the dying neurons problem in ReLU networks One of the motivations
for introducing maxout networks in Goodfellow et al! (2013) was to provide an alternative to ReLU
networks with the potential to improve issues with dying neurons. The dying neurons problem in
ReLU networks refers to ReLU neurons being inactive on a dataset and never getting updated during
optimization. It can lead to a situation when the training cannot commence if all neurons in one
layer are dead. This problem never occurs in maxout networks since maxout units are always ac-
tive. Furthermore, the absence of the zeroed paths, as in ReLU networks, has unclear effects on the

function complexity.
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Figure 1.2: Example of a situation where the training is unsuccessful for a ReLU network because all
neurons in the first layer are dead, while a maxout network trains successfully on the same dataset.
We indicate the positions of the breakpoints in the first layer with the green X symbol. Notice that
the breakpoints do not move during the training of a ReLU network but change their positionsin a
maxout network.

We design a simple experiment to illustrate the issue of dying neurons. We consider a binary
classification task on a dataset sampled from a Gaussian mixture of two univariate Gaussians
N(0.8,0.1) and N(1.6,0.1). We sample 600 training, 200 validation, and 200 test points. We
construct maxout and ReLU networks with 5 layers and 5 units per layer. Maxout units rank equals
2. We set weights and biases in the first layer so that the breakpoints are left of the data. For ReLU,
we also ensure that the weights are negative to guarantee that the neurons in the first layer are
inactive. Hence, all the units in the first layer of the ReLU network are dead. Then we train the
network for 20 epochs using SGD with a learning rate of 0.5 and batch size of 32. For the ReLU
networks, since all units in the first layer are dead, the training is unsuccessful, and the accuracy on
the test set is 50%. In contrast, for the maxout network, the test set accuracy is 100%. Figure

illustrates this example.

Maxout networks are more compatible with dropout than ReLU networks Maxout networks
were proposed by Goodfellow et al| (2013) as an alternative to ReLU networks with the potential
to attain better model averaging when used with dropout (Hinton et all, 2012). The original paper
(Goodfellow et all, 2013) conducted experiments comparing maxout and tanh. In Table [, we show

the results of an experiment demonstrating that in terms of allowing for a better approximation
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Table 1.1: Accuracy on the MNIST dataset of fully-connected networks trained with dropout with a
rate of 0.5 and of average predictions of several networks in which half of the weights were masked.
All results were averaged over 4 runs. Maxoutrank K = 5. Networks had 3 layers with 128, 64, and
32 neurons. Maxout networks were initialized using the initialization suggested in Chapter |, and
ReLU networks using He initialization with Gaussian distribution (He et al), 2o1g). ReLU networks
with dropout give results closer to a single model, whereas maxout networks with dropout give re-
sults closer to the average of a larger number of models. This observation indicates that maxout
units are more effective for obtaining better model averaging using dropout.

AVERAGE OF AVERAGE OF AVERAGE OF
DROPOUT 1 MODEL

2 MODELS 3 MODELS 4 MODELS
ReLU 97.04+0-14 97.09+0-17 97.73+0.08 97.87+0-04 97.94+0-08
Maxout  98.37+0:09 97.66+0-04 08.03+0-05 08.15+0:08 08.19+0-06

of model averaging based on dropout, maxout networks compare favorably against ReLU. This ob-
servation indicates that maxout units can indeed be more suitable for training with dropout when
properly initialized. We point out that several contemporary architectures often rely on dropout,

such as transformers (Vaswani et al), 2017).

1.2 Contributions and thesis outline

We start by providing the background for the results presented in this thesis in Chapter fl. We review
the historical development of expressivity and network complexity research; stable initialization of
neural networks; the connection between neural networks with piece-wise linear activations and
tropical geometry; and conclude with a brief overview of the neural tangent kernel.

We proceed with Chapter [, based on Tseran and Montufar (2021). In this part of the thesis, we
analyze the expected complexity of maxout networks. For any choice of parameters, maxout net-
works subdivide their input space into linear regions, maximal connected subsets of the input space
R™ on which the function f computed by a network has a constant gradient. We formalize the no-
tion of linear regions using the concept of activation regions, defined as subsets of the input space
where different pre-activation features attain maximum. Hence, to characterize the network com-
plexity, we are concerned with the expected number of activation regions and their volume given
probability distributions of parameters and corresponding properties for the decision boundaries

in classification tasks. We obtain the following results for the complexity of maxout networks.

o There are widely different numbers of linear regions that are attained with positive probability
over the parameters (Theorem @) Thereis anon-trivial lower bound on the number of linear
regions that holds for almost every choice of the parameters (Theorem .8). These results
advance the maximum complexity analysis of Montufar et al! (2022) from the perspective of

generic parameters.
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e For common parameter distributions, the expected number of activation regions is polyno-
mial in the number of units (Theorem R.g). Moreover, the expected volume of activation re-
gions of different dimensions is polynomial in the number of units (Theorem f.1d). These
results correspond to maxout versions of results from Hanin and Rolnick (2019b) and Hanin

and Rolnick (20194).

¢ For multi-class classifiers, we obtain an upper bound on the expected number of linear pieces
(Theoremf.11) and the expected volume (Theorem R.13) of the decision boundary, along with a

lower bound on the expected distance between input points and decision boundaries (Corol-

lary g.19).

e We provide an algorithm and implementation for counting the number of linear regions of

maxout networks (Algorithm f.{).

e We present parameter initialization procedures for maxout networks maximizing the number
of regions or normalizing the mean activations across layers (similar to Glorot and Bengio
2010; He et al) po15), and observe experimentally that these can lead to faster convergence of

training.

We continue with Chapter [ based on Tseran and Montufag (2023), in which we study the gra-
dients of maxout networks. The analysis is based on the input-output Jacobian. We discover that,
in contrast to ReLU networks, when initialized with a zero-mean Gaussian distribution, the dis-
tribution of the input-output Jacobian of a maxout network depends on the network input, which
may lead to unstable gradients and training difficulties. Nevertheless, we compute bounds on the
moments of the gradients of maxout networks depending on the parameter distribution and the
network architecture and derive a rigorous parameter initialization strategy for wide networks and

several implications for stability and expressivity. Our results can be summarized as follows.

¢ For expected gradients, we derive stochastic order bounds for the directional derivative of the
input-output map of a deep fully-connected maxout network (Theorem [1]) aswell asbounds
for the moments (Corollary [4.9). Additionally, we derive equality in distribution for the direc-
tional derivatives (Theorem |g.9), based on which we also discuss the moments (Remark [4.4)
in wide networks. We further derive the moments of the activation length of a fully-connected

maxout network (Corollary [y.g).

e Werigorously derive parameter initialization guidelines for wide maxout networks prevent-
ing vanishing and exploding gradients and formulate architecture recommendations. We
experimentally demonstrate that they make it possible to train standard-width deep fully-
connected and convolutional maxout networks using simple procedures (such as SGD with
momentum and Adam), yielding higher accuracy than other initializations or ReLU networks

on image classification tasks.
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e We derive several implications refining previous bounds on the expected number of linear re-

gions (Corollary[4.6), and new results on length distortion (Corollary[4.) and the NTK (Corol-

lary [4.d).

1.3 Overview of the computational results

As aresult of the research in this thesis, we develop multiple experiments and helpful components.
The code for them is public. The implementations relevant for Chapter H are available at https:
//github.com/hanna-tseran/maxout_complexityand for Chapterl,in https://github.
com/hanna-tseran/maxout_expected_gradients.

Specifically, https://github.com/hanna-tseran/maxout_complexity contains the fol-
lowing routines implemented in Python using PyTorch library (Paszke et al, po19) that can be used

for maxout and ReLU networks, where applicable:
¢ Implementations of the maxout fully-connected networks;
¢ Approximate and exact computation of the number of linear regions;
o Exact computation of the number of linear pieces in the decision boundary;

¢ Computation of the formulas for the upper bounds on the expected number of linear regions

and pieces in the decision boundary for maxout networks from Chapter f;

¢ Plots of the linear regions and decision boundary in a 2D slice of the input space determined

by three data points;

¢ Computation of the routines above during the network training on the MNIST dataset (LeCun

and Cortes, 201d);

e Implementations of the various maxout network parameter initialization procedures

described in Chapter f§.

The second repository, https://github.com/hanna-tseran/maxout_expected_
gradients, contains the following components in Python implemented using Tensorflow library
(Martin Abadi et all, po1g) that can, similar to the tools above, be used for maxout and ReLU

networks, where applicable:
¢ Implementations of the maxout fully-connected and convolutional neural networks;
¢ Implementations of the maxout and max-pooling initializations;

¢ Experiments training networks on MNIST (LeCun and Cortes, 201d), Iris (Fisher, 1936), Fash-

ion MNIST (Xiao et all, 2o17), SVHN (Netzer et al), po11), CIFAR-10 and CIFAR-100 datasets
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(Krizhevsky et all, 2ood)) using SGD with Nesterov momentum and Adam optimizer Kingma

and Ba (2015);

o Expectation of the directional derivative of the input-output map for width-2 fully-connected

networks with inputs in R?;

¢ Estimation of the mean and interquartile range of the squared gradients with respect to the

network weights;
o Estimation of the activation length and its comparison to the formula from Chapter [4;

« Estimation of the value of the cosine appearing in the statement of Theorem [¢.]in Chapter 4

depending on the network initialization, and the network width and depth;

¢ Plots of the square norm of the directional derivative of the input-output map of a maxout
network for a fixed random direction with respect to the weights, plotted as a function of the

input;

o Plots for the second moment of the largest order statisticin a sample of K standard Gaussians
=(N(0,1), K) for different sample sizes K.

1.4 Discussion

Conclusion

In this thesis, we have contributed to the understanding of the expected behavior of deep maxout
neural networks and extended the previous line of work investigating the expected behavior of net-
works with single-argument activation functions (Hanin and Rolnick, po1gb,a, 2018), particularly
ReLU networks, to the multi-argument case. For maxout networks, we observe that their practical
complexityis far from the theoretical maximum, derive an initialization procedure provably improv-
ing the optimization with gradient descent, and obtain several implications for the expressivity and
neural tangent kernel. We support our findings with multiple experiments. We believe this line of
work can advance the research of neural network activation functions beyond the common choices
and serve as a platform for the analysis of more complicated neural network architectures, such as

graph neural networks and transformers.

Limitations

e In our theory, we have considered only fully connected networks. However, our experiments
indicate that the subset of our results on gradient moments and network initialization also

holds for CNNs, though a theoretical analysis of CNNs is yet to be conducted.
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e By design, the results on the expected complexity of maxout networks focus on parameter

distributions that have a density.

¢ Even though our proposed initialization of a maxout network is optimal in the sense of the
criteria specified in Chapter |y, our results are applicable only when the weights are sampled

from N (0, ¢/fan-in) for some c.

Further directions

Multiple exciting further directions can build on the work in this thesis. They include the following

topics:

o Extension of the results to architectures that are more involved than feedforward fully-
connected maxout networks and employ multi-argument functions. One example is graph
neural networks, which use multi-argument aggregation functions, including the maximum

aggregation function;

o Exploration of the benefits of maxout units to architectures that use dropout, such as trans-

formers;

¢ Extension of the results on the expected number of linear regions to a fine-grained descrip-
tion of the distribution of activation regions over the input space depending on the parameter

distribution;

e Analysis of the relationship between the expected complexity of the networks atinitialization

and the speed of convergence and implicit biases in gradient descent;

¢ Extension of the presented results on the expected complexity to specific types of parame-
ter distributions, including those that do not have a density or those one might obtain after

training;

o Investigation of the effects of the initialization strategies stabilizing the initial gradients dur-

ing later stages of training.

1.5 Other projects developed during the Ph.D. studies

In addition to the topics discussed in this thesis, during the Ph.D., I have worked on analyzing the
loss landscape of mildly overparametrized ReLU networks and designing a memory-augmented ef-
ficient transformer-based model. These projects are absent in the main discussion since they are not
directly related to the main subject of the thesis, which is the expected behavior of maxout networks.

However, these studies address related questions from complementary angles.
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The project on the loss landscape focuses on the behavior of mildly-overparametrized neural
networks. It further advances the line of work on the loss landscape analysis to practical scenarios,
while the previous studies often focused on the overparametrized case or had to introduce assump-
tions that might not hold in practice. Hence, it shares goals with the investigation of the expected
network behavior. Correspondingly, the Turing Machine Transformer project studies how to im-
prove a transformer architecture by making the attention mechanism more efficient. Similar to the
maxout network analysis, such research helps understand and improve neural network architec-
tures.

Below I outline the summary of these two projects.

Mildly overparametrized ReLU networks have a favorable loss IandscapeH In Karhadkar et al,
(2023), we consider the loss landscape of mildly overparametrized ReLU networks. In general, the
optimization landscape of neural networks has been a topic of enormous interest over the years. A
particularly puzzling question is why bad local minima do not seem to be a problem for training. We
study the loss landscape of two-layer mildly overparametrized ReLU neural networks on a generic
finite input dataset for the squared error loss. Our approach involves bounding the dimension of the
sets of local and global minima using the rank of the Jacobian of the parameterization map.

In contrast to previous related works, we can formulate our results for ReLU activations rather
than LeakyReLU or other smooth activation functions. Unlike, for instance, Soudry and Carmon
(2016), we do not assume dropout noise on the network outputs; contrary to Safran and Shamir
(2018), we do not assume any particular distribution on our datasets. Using results on random bi-
nary matrices, we show that most activation patterns correspond to parameter regions with no bad
differentiable local minima. Furthermore, for one-dimensional input data, we show that most ac-
tivation regions realizable by the network contain a high dimensional set of global minima and no
bad local minima. We experimentally confirm these results by finding a phase transition from most
regions having full rank Jacobian to many regions having deficient rank depending on the amount

of overparametrization.

Turing Machine Transformer for unbounded sequence processingE Multi-head self-attention
is crucial to the transformer architecture (Vaswani et al), 2017). However, the amount of compu-
tation it performs quadratically depends on the input length, and besides, standard transformers
can work only with inputs of fixed length. Furthermore, theoretical limitations make it challeng-

ing for these models to represent hierarchical structures (Hahn|, 2020). These issues make applying

Karhadkar et al| (2023), under review. This is joint work with Kedar Karhadkar, Michael Murray, and Guido Montufar.
My main contribution is to experiments. Specifically, I conducted experiments on the estimation of the percentage of
randomly sampled activation regions containing a global minimum of the loss, participated in the experiments estimating
the probability of the Jacobian being of full rank, and helped with the preprint preparation.

*Under review. This is joint work with Cheng Wang. The project was carried out during the internship at Amazon
at Berlin Machine Learning team between 15.11.2022 — 15.03.2023. I contributed to the model design, implemented the
experiments, and wrote the paper jointly with Cheng Wang.
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transformer-based models to applications such as long chatbot conversations or document embed-
ding problematic.

In this work, following the idea of augmenting transformers with external memory, introduced
to allow for extended contexts, we develop a novel approach based on the Neural Turing Machine
(Graves et all, po14). Previously, Ebrahimi et al! (2020) observed that a transformer might work as a
pushdown automaton (PDA) which uses a stack as its memory. Since the Turing machine is prov-
ably more powerful than the PDA in terms of the set of languages it can recognize, and an extension
based on the Neural Turing Machine is Turing complete, we expected it to be more efficient than
similar memory-augmented transformers. Consequently, we present a modification of the trans-
former architecture based on the Neural Turing Machine. It reduces the space and time complexity
of self-attention, allows processing sequences of any length, and is better rooted in theory than sim-
ilar models. We perform a series of experiments on several datasets comparing the memory capacity

of the introduced model to a vanilla transformer.
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Background

2.1 Network expressivity

The expressive power or capacity of a given network corresponds to the richness of the class of func-
tions it can represent. A substantial number of works has considered this question, for example,
Pascanu et al| (2013); Montufar et al) (2014)); Bianchini and Scarselli (2014); Poole et al! (2016); Raghu
et al| (2017); Serra et al! (2018); Kileel et all (2019); Xiong et al! (202d); Bodnar et al) (2021). Particu-
larly upper bounds on the expressivity measures have been studied a lot. The common conclusion
for different complexity measures is that their upper bounds grow exponentially with the network
depth, which has been proposed as an explanation of the effectiveness of deeper networks.
However, a question one might be particularly interested in is the expected complexity of neural
networks that one can observe in practice and how far it is from the maximum theoretically possible
complexity. In this thesis, we continue the line of work started by Hanin and Rolnick (20194,b), who
analyzed the expected behavior of ReLU networks. Advancing this course of study, we investigate
the expected behavior of maxout networks, including the question of the expected complexity at
initialization time, where the expectation is with respect to the distribution of the network param-

eters.

2.1.1 Connection to approximation

In this section, we expand on the connection between the analysis of neural network expres-
sivity and approximation properties following, to a certain extent, the discussion by [Telgarsky
(2021). Consider the following setting. Given a dataset (X,y), X € R™* "™ y € R", a model
computing function f(z), and a loss function ¢ : R™*™ x R™ — R, we suffer empirical risk
R(f) = 1/n Y1 4(f(xi),y;) on a training set. For the test data, consider population risk
R(f) = E[¢(f(x),y)]. Additionally, consider an optimization algorithm choice f € F, where F
is a hypothesis class, and f* € F is the solution with the minimum risk from the hypothesis class.

Following a classical point of view, the population risk for f € F can be decomposed into the
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following terms: generalization, concentration/generalization, optimization, and approximation

errors. Specifically,

R(f)=R()-R() +R()-RS)+  RUI-RU)  + R
- ~—_—— ~——
generalization error optimization error concentration/generalization error approximation error

Out of these terms, approximation error is the one that is the most related to expressivity. The
study of approximation errors of neural networks and expressivity are closely connected, and some-
times the terms are used interchangeably (Giihring et all, 2020). However, in contrast to the approx-
imation error analysis, expressivity usually refers to describing the functions that neural networks
can represent exactly, and this is the expressivity definition we will be using in this thesis.

The classical results on approximation in neural networks are the universality theorems due to
Hornik et al! (1989); Cybenko (1989); Funahashi (198g). These works discuss similar statements,
and, for instance, omitting the details, Hornik et al| (1989) proved that there is a single hidden layer
feedforward network that approximates any measurable function to any desired degree of accuracy
on some compact set K.

However, in the results above, as approximation accuracy tends to zero, the network width tends
to infinity, which does not describe the practical scenarios. Furthermore, in practice, it is observed
that deep networks perform better than their shallow counterparts. Hence, the effects of network
depth on the complexity of functions computed by networks and approximation errors have re-
ceived special attention. Below we expand on the type of results termed “depth separation results”

that are particularly relevant to the discussion of network expressivity.

Depth separation results

The line of work concentrated on studying if there are functions that cannot be approximated by
reasonably wide shallow networks but can be arbitrarily well approximated by a finitely wide deeper
networkis often referred to as “depth separation results” in the literature. Further, we review several
of the results of this type.

One of the earliest results of this type considers sum-product networks. A sum-product network
is a network composed of units that either compute the product of their inputs or a weighted sum of
their inputs (Where weights are strictly positive) Delalleau and Bengid (2011). Consider F —a family
of functions computed by a sum-product network (deep for i > 2) composed of alternating product
and sum layers. Denote with n = 4 the input size. We set the network depth to 2i. Delalleau and
Bengio (2011) have shown that any shallow sum-product network computing f € F must have at
least 2"~ hidden units. Note that a multi-layer sum-product network is a polynomial, and this
separation result does not imply a ReLU separation.

Telgarsky (2o1g, 2016) discovered the earliest proof showing that a deep network can not be ap-
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proximated by a reasonably-sized wide shallow network. Consider the following function A:

2 z €[0,1/2),
Alx)=4¢ 2—-2z z€(1/2,1),

0 otherwise.

Telgarsky (2015, 2016) demonstrate thatforany L > 2, f = AL*+2 5 3 ReLU network with 312 +
6 nodes and 4L? + 4 layers, but any ReLU network g with < 2% nodes and < L layers can not
approximate it:
[, 15 =gt = 55
The proof idea behind this statement is to upper bound the number of linear regions in a ReLU
network. Since the number of linear regions grows polynomially in width but exponentially in depth
(Montufar et al}, 2014)), we can use the region counting argument to show that reasonably sized shal-
low networks cannot approximate the goal function. Notice that this result is naturally connected

to the analysis of the expressivity of neural networks in terms of the number of linear regions.

2.1.2 Connection to memorization

The results mentioned above considered continuous function approximation. Another related field
of study is the investigation of the memorization capabilities of neural networks. Memorization
refers to the phenomenon that a large enough network can memorize an entire dataset, meaning
thatif given NV data points, the network can learn the function they represent. These works address
whether deeper networks require fewer parameters to memorize the training data, which is related
to understanding the effects of the network depth on its expressivity. Below we summarize the re-
sults from Baldi and Vershynin| (2019) of this type.

Baldi and Vershynin (2019 considered threshold functions as activations. They define the ca-
pacity of a neural architecture A(n,ng, ..., ny) as the binary logarithm of the number of different
functions f : H™ — H™L it can compute. They show that for a neural architecture A(ny,...,nr)
with L > 2layers, assuming that the number of nodes in each layer satisfies n; > 181log,(Lny,) for
any pair j, k suchthat1 < j < k < L, its capacity is

L-1
C’(nl, N ,TLL) = min(nl, e ,nL) Z NENk+1-
k=1

Here the notation @ < b means that there exist two positive absolute constants ¢y, ¢, such that
c1b < a < cob. Baldi and Vershynin (2019) conclude that while shallow networks compute more
functions than deep networks, the functions computed by deep networks are more regular, in terms

of avoiding overfitting.
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2.1.3 Complexity measures

Previous works have introduced various measures of network expressivity. For instance, the number
of linear regions, distortion of the length of the curve as it passes through the network, and topo-
logical complexity of the input space. In this thesis, we consider the number of regions of maxout
networks in Chapters § and |, and the curve length distortion for maxout networks in Chapter |f.

Below we expand on several of the measures in more detail.

Number of linear regions

Consider the networks with piece-wise linear activation functions, such as ReLU and maxout unit
activation functions. Then the functions computed by such networks are piece-wise linear, and we
can define the notion of a linear region. Specifically, let f: R™ — R be a piecewise linear function.
A linear region of f is a maximal connected subset of R™ on which f has a constant gradient. See
Figure b.{ for the illustration of linear regions of a network.

For neural networks with piece-wise linear activation functions, the number of activation re-
gions serves as a complexity measure and summary description, which has proven useful in the in-
vestigation of approximation errors, Lipschitz constants, speed of convergence, implicit biases of
parameter optimization, and robustness against adversarial attacks. In particular, Pascanu et al.
(2014); Montufar et al| (2014)); Telgarsky (2015, 2016) obtained depth separation results showing that
deep networks can represent functions with many more linear regions than any of the functions that
shallow networks with the same number of units or parameters can represent. This implies that cer-
tain tasks require enormous shallow networks but can be solved with small deep networks. The ge-
ometry of the boundaries between linear regions has been used to study function-preserving trans-
formations of the network weights (Phuong and Lampert, 2o19; Serra et al), 202d) and robustness
(Croce et all, po1g; Lee et all, po19a). Steinwart (2019) demonstrated empirically that the distribu-
tion of regions at initialization could be related to the speed of convergence of gradient descent, and
Williams et al! (2019)); Jin and Montuifar (2023) related the density of breakpoints at initialization
to the curvature of the solutions after training. The properties of linear regions concerning training
have been recently studied by Zhang and Wy (2020), and the number of linear regions of a shallow
univariate ReLU network after optimization has been analyzed in Safran et al) (2022). The number
of regions has also been utilized to study the eigenvalues of the neural tangent kernel and Lipschitz
constants (Nguyen et all, 2020).

Especially the maximum number of linear regions has been studied intensively. In particular,
Montuifar (2017); Serra et al) (2018) improved the upper bounds from Montufar et al! (2014)) by ac-
counting for output dimension bottlenecks across layers. Hinz and Van de Geer (2019) introduced
a histogram framework for a fine-grained analysis of such dimensions in ReLU networks. Based on
this, Kie et al! (2020); HinZz (2021) obtained still tighter upper bounds for ReLU networks. Sharp up-

per bounds on the number of linear regions of fully-connected maxout networks were obtained in
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A

Linear regions Number of linear regions

Eu ‘
&1

Figure 2.1: Left: Shown is a piecewise linear function R? — R represented by a network with a layer

of two rank-3 maxout units for a choice of the parameters. The input space is subdivided into linear
regions. Right: Shown is the number of linear regions of a 3-layer maxout network over a portion of
the input space as a function of a 2D affine subspace of parameter values 6(&1,&2). Shown are also
two examples of the input-space subdivisions of functions represented by the network for different
parameter values. As the figure illustrates, the function taking parameters to the number of regions
israther intricate. In this work, we characterize values attained with positive probability and upper
bound the expected value given a parameter distribution.

Montufar et all (2022). The maximum number of regions has been studied not only for fully con-

nected networks but also convolutional neural networks (Xiong et al), 202d), graph neural networks

(GNNs), and message passing simplicial networks (MPSN) (Bodnar et al), 2021).

Expected number of linear regions Although the maximum possible number of regions gives
useful complexity bounds and insights into different architectures, in practice, one may be more

interested in the expected behavior for typical choices of the parameters. The first results on the

expected number of regions were obtained by Hanin and Rolnick (lzmqal,E) for the case of ReLU net-

works or single-argument piecewise linear activations. They show that if one has a distribution of
parameters such that the conditional densities of bias values are bounded, and the expected gra-
dients of activation values are bounded, then the expected number of linear regions can be much
smaller than the maximum theoretically possible number. Specifically, while upper bounds on the
maximum number of linear regions grow exponentially with the network depth, upper bounds on
their expected number do not depend on the network depth and grow polynomially with the total
number of neurons in the network. Moreover, they obtain bounds for the expected number and vol-
ume of lower dimensional linear pieces of the represented functions. These results do not directly
apply to the case of maxout units, and in Chapter E, we adapt the proofs to obtain corresponding

results for maxout networks, refining the bounds further in Chapter 4.
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Curve distortion

Another useful measure of the complexity of the function computed by a neural network is the dis-
tortion of the length of an input curve as it passes through the network. Poole et al. (2016) studied the
propagation of Riemannian curvature through wide neural networks using a mean-field approach,
and later, a related notion of “trajectory length” was considered by Raghu et all (2017). It was demon-
strated that these measures can grow exponentially with the network depth, which was linked to the
ability of deep networks to “disentangle” complex representations. Based on these notions, Murray
et al] (2022) studies how to avoid rapid convergence of pairwise input correlations, vanishing, and

exploding gradients.

Expected curve distortion In contrast to the results above, Hanin et al. (2021) proved that for a
ReLU network with He initialization, the length of the curve does not grow with depth and even

shrinks slightly. Similar results are established for maxout networks in Chapter |4.

Topological complexity

Another interesting network complexity measure is the topological complexity introduced in Bian-
chini and Scarsellj (2014). Let for : R™ — R be the function implemented by a feedforward neural
network NV, with n inputs and a single output. Complexity of the function f)/ is then measured by
the topological complexity of the set Syy = {z € R"|far(z) > 0}.

Bianchini and Scarselli (2014)) prove the following statements. First, for network architectures
with a single hidden layer, the sum of the Betti numbers, B(S), grows at most polynomially with
respect to the number of the hidden units h, i.e,, B(Sys) € O(h™), where n is the input dimension.

Second, for deep networks, B(.Sxs) can grow exponentially in the number of the hidden units, i.e.,

B(Sy) € Q(2h).

2.1.4 Complexity of maxout networks

Most previous works investigating neural network expressivity have focused on ReLUs or single-
argument activation functions.

Firstly, consider the number of linear regions as the measure of the network complexity of ReLU
networks. The linear regions of individual layers are described by hyperplane arrangements, which
have been investigated since the 19th century (Steinet, 1826; Buck, 19473; Zaslavsky, 19775). Hence, the
main challenge in these works is the description of compositions of several layers. In contrast, the
linear regions of maxout layers are described by complex arrangements that are not so well under-
stood yet. We describe this problem in more detail in Section p.3.3.

Consequently, the study of maxout networks poses significant challenges already at the level of
individual layers and, in fact, single units. For maxout networks, the maximum possible number of

regions has been studied by Pascanu et al! (2014); Montufar et al! (2014); Serra et al! (2018). Recently,
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Montufar et all (2022) obtained counting formulas and sharp (asymptotic) upper bounds for the
number of regions of shallow (deep) maxout networks. However, they focused on the maximum
possible value rather than the generic behavior we investigate in this thesis.

Secondly, there are no works we know of investigating the complexity of maxout networks from

the angle of curve distortion, as we do in Chapter 4.

2.2 Parameter initialization in neural networks

Neural network initialization can have different purposes besides ensuring the training is possible.
Both in Chapter H and [, our main goal concerning initialization is to obtain a stable approach to
the parameter initialization in maxout networks. We consider a network initialization stable if it
avoids vanishing and exploding gradients. The vanishing and exploding gradient problem has been
known since the work of Hochreiter (1991). It refers to gradient updates approaching zero or becom-
ing extremely large. Exploding or vanishing gradients can prevent the optimization from starting,
or, if the training can begin, makes choosing an appropriate learning rate harder and slows training
(Sun, 2o19).

Common approaches to address this difficulty besides using an appropriate initialization in-
clude the choice of specific architectures, e.g., LSTMs (Hochreitet, 1991) or ResNets (He et al), 2016),
and normalization methods such as batch normalization (loffe and Szegedyl, 2015) or explicit con-
trol of the gradient magnitude with gradient clipping (Pascanu et al), 2013). These techniques can be
combined with initialization to achieve even better performance. For instance, in Section [g.].4, we
observe that the initialization strategy proposed for maxout networks in Chapter [ is still beneficial
when training with batch normalization.

In this thesis, we focus on approaches based on parameter initialization that control the acti-
vation length and parameter gradients (LeCun et all, po12; Glorot and Bengid, 2010; He et all, 2o1g;
Gurbuzbalaban and Hu, po21; Zhang et all, 2o1g; Bachlechner et al), 2021). Two of the most well-
known examples of such initialization are Glorot (Xavier) initialization for tanh networks (Glorot
and Bengio, 2010) and He (Kaiming) initialization for ReLU networks (He et all, o1g). Glorot and
Bengio (2010) studied forward and backward passes to obtain initialization recommendations for
tanh activation function. Specifically, they suggest initializing weights in the [th layer asi.i.d. sam-
ples from a Gaussian distribution N (0, 2/n;_1 + n;) or from a uniform distribution U[—a, a],a =

6/(n;—1 + n;). He et al. (2015), in a similar fashion, studied forward and backward passes of a
ReLU network. They suggest initializing weights in the /th layer of a ReLU neural network, as i.i.d.
samples from a Gaussian distribution N (0, 2/n;_1) or from a uniform distribution U|—a, a],a =
+/6/n;_1. Hanin and Rolnick (2018); Hanin (2018) performed a more rigorous analysis of the gradi-
ents of ReLU networks. They also considered higher-order moments, confirmed the recommenda-

tion from He et al! (2015), and derived recommendations on the network architecture.
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Stable initialization of maxout networks For the first time, a stable initialization specific to
maxout networks was mentioned in Sun et al| (2018), who derived an initialization strategy inspired
by Glorot and Bengig (2010); He et al) (2014) for rank K = 2 maxout networks. Taking a similar ap-
proach, we derive the first stable initialization for maxout networks with units of higher ranks in
Chapter f. There we consider balancing the forward pass, assuming Gaussian or uniform distri-
bution on the pre-activation features of each layer. However, this assumption is not fully justified.
Continuing this line of work, in Chapter [4, we analyze maxout network gradients, including the
higher order moments, following the ideas in Hanin and Rolnick (2018); Hanin (2018), and provide

a rigorous justification for the initialization suggested in Chapter .

Other types of initialization Asmentioned above, the neural network initialization methods can
be designed for different purposes. One is to ensure that the complexity of the function represented
by aneural network is as high as possible. To achieve this, one can ensure the network has the maxi-
mum number of regions in the input space atinitialization. Such a description of parameter choices
maximizing the number of regions for a layer of maxout units has been given by Montufar et al.
(2022, Proposition 3.4). Another technique, suggested by Steinwart (2019) for ReLU networks, is to
initialize parameters in such a way that the nonlinear locus of different units of a network is evenly
spaced over the input space at initialization, which could lead to faster convergence of training. We

consider several initializations of these other types for maxout networks in Chapter .

2.3 Tropical perspective on neural networks with piece-wise linear

activation functions

Tropical geometry can be utilized to understand neural networks with piece-wise linear activation
functions, including maxout and ReLU activations. This approach was first formalized in Zhang et al.
(2018). The tropical geometry interpretation allows us to understand better the complexity of max-
out units and their difference from ReLUs in Section b.3.3 below. Additionally, we use statements,
which are based on the tropical geometry approach, to prove a generic lower bound on the number
of linear regions (Theorem f.8) in Chapter . Outside this work, the tropical geometry was the ba-
sis for deriving sharp upper bounds on the number of linear regions of maxout networks (Montufar
et all, 2022), which bounds the expressivity of maxout networks and is closely related to this thesis
topic.

Further, in Sections p.3.] and p.3.9, we briefly recap the basics of tropical geometry and its appli-
cation to neural networks, omitting many details, and follow Zhang et al| (2018). A detailed intro-

duction to tropical geometry can be found in Maclagan and Sturmfels (2015).
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2.3.1 Basic tropical geometry definitions

The most fundamental component of tropical algebraic geometry is the tropical semiring T := (R U
{-00},®, ®). The two operations & and ©, called tropical addition and tropical multiplication, re-

spectively, are defined as follows. For z, y € R, their tropical sum is
x @y = max{z,y},
and their tropical productis
Oy :=z+Yy.
Additionally, the tropical quotient of x over y is defined as
rTQY = —Y.

LetN = {n € Z : n > 0}. For aninteger a € N, raising x € R to the ath power is the same as
multiplying z to itself a times. When standard multiplication is replaced by tropical multiplication,

this gives us tropical power,

where the last - denotes the standard product of real numbers. We will write 2% instead of 2% for
notation simplicity.

Then, a tropical monomial in d variables x1, . . . , x4 is an expression of the form
a1 a2 aq
cOT Oxy" OOz,

where ¢ € RU {-0c0} and ay,...,aq € N. As a shorthand, we will write a tropical monomial as
cx®wherea = (a1,...,a4) € Nlandz = (z1,...,24).

Subsequently, using the notation above, a tropical polynomial is defined as

f(z) = Zcixai,

1=0

where the sum is the tropical sum, o; = (a1, ...,a;q) € NYand¢; € RU {-00},i=1,...,7.

Finally, a tropical rational function is the tropical quotient of two tropical polynomials:

f(@)og(x) = fz) - g(x).

Tropical hypersurfaces prove to be useful for analyzing linear regions of neural networks. A trop-

34



Chapter 2. Background

ical hypersurface of a tropical polynomial f : RY — R is defined as
Trop(f) := {x € R?: ¢ja® = ¢;2% = f(x)fori # j two distinct monomials}.

2.3.2 Tropical geometry of neural networks

Zhang et al! (2018, Theorem 5.2) established that a feedforward neural network under assumptions
that weight matrices are integer-valued and ReLU is used as an activation function is a function

v : R? — RP whose coordinates are tropical rational functions of the input, i.e.,
v(z) = F(z) © G(x),

where F'and G are tropical polynomial maps. Thus v is a tropical rational map. A similar statement
holds for a maxout network, which is used in Montufar et al| (2022).

One of the questions considered in this thesis is the complexity of the function computed by
a neural network in terms of the number of linear regions in the input space. Using the statement
above stating that a neural network can be regarded as a tropical rational map, we can apply tropical
geometry to investigate this issue in the following way.

For a tropical polynomial f(z) = >, ¢;z® define its Newton polytope as the convex hull of
ai,...,a, € N% Specifically,

A(f) := conv{q; eRY:¢; #£ —00,i= 1,...,7}

Then the lifted Newton polytope s defined as P(f) := conv{(a;,¢;) € RIxR : i =1,...,7}.Itis
known that the number of vertices in P( f ) provides an upper bound on the number of linear regions
of f, and hence, an upper bound on the number of linear regions of a tropical rational function f © g

(zhang et all, 018, Section 3).

2.3.3 Difference between linear regions of ReLU and maxout networks

Tropical geometry also provides a helpful framework for understanding the difference in complexity
of the linear regions corresponding to ReLU and maxout networks. A layer of ReLUs is the following

map:

max{O, W1:13 + b1}
R" - R™;, x+— :

max{0, W,z + b, }

It has linear regions separated by a hyperplane arrangement, which has been studied since the 19th

century (Steiner, 1826; Buck, 1943; Zaslavsky, 19775), and the number of linear regions corresponding
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(a) One layer of ReLUs subdivides the input (b) One layer of maxout units subdivides the in-
space into linear regions by slicing it with hy- put space into linear regions by slicing it with
perplanes. The number of linear regions is upper tropical hypersurfaces. The number of linear re-
bounded by the number of vertices in a zono- gions is upper bounded by the number of ver-
tope (Minkowski sum of line segments). tices in a Minkowski sum of polytopes.

Figure 2.2: Linear regions of ReLU networks vs. linear regions of maxout networks. Observe that
regions of a maxout network are created by the intersection of more complex objects.

to a single layer of ReLUs is upper bounded by the number of vertices in zonotopes (Minkowski sum
of line segments). Therefore, the main challenge for ReLU networks is in studying the composition

of layers. In contrast, a layer of maxout units is given by the following map

max{Wllcc + b11,...,Wikx + blK}
R" - R™;, xw~— : ,
max{Wmlm -+ bml, ey Wokx + me}
and hasregions separated by a tropical hypersurface arrangement. As aresult, for amaxoutnetwork,
the number of linear regions corresponding to one layer is upper bounded by the number of vertices

in a Minkowski sum of polytopes. These objects are less studied than zonotopes, so understanding

even one layer of maxout networks is challenging. We illustrate this issue in Figure b.3.

2.4 NTK and implicit bias

Neural tangent kernel (NTK) was introduced in Jacot et al} (2018). Consider SGD update to one of

the network parameters 6,,:

oL
Aby = —n—— =1,...,P
P T,aap I p I Y 9
where 7 € R is the learning rate, £ : R” — R is an empirical loss, and P = |@| is the total

number of parameters in a neural network. The loss £ is defined as 1/B Zle (N (x5;0),y;),

where £ : R™ x R™ — R is a per-sample cost function, and B is a batch size. Using Taylor
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expansion around the network parameters atinitialization and the chain rule, we get that the update

to the function computed by the network N is

o ot
AN () = = (K (), VL() Z N, 25) 5 (@5, ).

03\3

Here K/(x, ') is the NTK defined as

ON

Ky(z,x') = o0, —(x )a—ep(w')

p=1

Consider a fully connected network with a Lipschitz, twice differentiable nonlinearity function
o : R — R, with bounded second derivative. Assume that the NTK parametrization is applied to
the pre-activations, meaning that they are normalized in the following way: 1/,/n; Wz 4+ gp0)
where the scalar 5 > 0 is a parameter which allows tuning the influence of the bias on the train-
ing. Additionally, assume that the parameters are initialized as i.i.d. Gaussians N (0, 1). Then, Jacot
et al) (2018) observed that when the network depth is fixed, and the width tends to infinity, the NTK
K s simplifies and stays frozen during training at the infinite width limit of its average E[K x/] at
initialization, where the expectation is with respect to the distribution of the network parameters.
Hence, the NTK of a finite network can be approximated by its expectation. NTK has proven useful
for studying neural network optimization and its implicit biases, particularly for overparametrized
networks. Numerous works analyzed NTK or used it in their studies, such as Chizat et al! (2019);
Arora et al! (2019); Lee et al| (2019b); Williams et al] (2019)); Dukler et al (2020); Bowman and Mont-
ufat (2022); [in and Montuifar (2023).

However, Hanin and Nica (2020a) showed that if both the depth and width of a ReLU network
tend to infinity, the NTK does not converge to a constant in probability. By studying the expectation
of the gradients of a maxout network in Chapter lf, we show in Corollary @ that similarly to ReLU,
the NTK of maxout networks does not converge to a constant when both width and depth are sent

to infinity.
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On the expected complexity of maxout

networks

3.1 Introduction

We are interested in the functions parametrized by artificial feedforward neural networks with max-
out units. Maxout units compute parametric affine functions followed by a fixed multi-argument
activation function of the form (s1, ..., sx) + max{si, ..., sk} and can be regarded as a natural
generalization of ReLUs, which have a single-argument activation function s — max{0, s}. For any
choice of parameters, these networks subdivide their input space into activation regions where dif-
ferent pre-activation features attain the maximum and the computed function is (affine) linear. We
are concerned with the expected number of activation regions and their volume given probability
distributions of parameters, as well as corresponding properties for the decision boundaries in clas-
sification tasks. We show that different architectures can attain very different numbers of regions
with positive probability, but for parameter distributions for which the conditional densities of bias
values and the expected gradients of activation values are bounded, the expected number of regions

is at most polynomial in the rank K, and the total number of units.

Activation regions of neural networks For neural networks with piecewise linear activation
functions, the number of activation regions serves as a complexity measure and summary descrip-
tion, which has proven useful in the investigation of approximation errors, Lipschitz constants,
speed of convergence, implicit biases of parameter optimization, and robustness against adversarial
attacks. In particular, Pascanu et al| (2014); Montufar et al! (2014)); Telgarsky| (2015, 2016) obtained
depth separation results showing that deep networks can represent functions with many more
linear regions than any of the functions that can be represented by shallow networks with the
same number of units or parameters. This implies that certain tasks require enormous shallow

networks but can be solved with small deep networks. The geometry of the boundaries between
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linear regions has been used to study function-preserving transformations of the network weights
(Phuong and Lampert, 2o19g}; Serra et al), 2020) and robustness (Croce et all, 2o19g; Lee et al), 20194d).
Steinwart (2019) demonstrated empirically that the distribution of regions at initialization can be
related to the speed of convergence of gradient descent, and Williams et al| (2014)); J[in and Montufar
(2027) related the density of breakpoints at initialization to the curvature of the solutions after
training. The properties of linear regions in relation to training have been recently studied by Zhang
and Wu (2020). The number of regions has also been utilized to study the eigenvalues of the neural

tangent kernel and Lipschitz constants (Nguyen et al), 2020).

Maximum number of regions Especially the maximum number of linear regions has been
studied intensively. In particular, Montifar (2017); Serra et al| (2018) improved the upper bounds
from Montufar et al. (2014) by accounting for output dimension bottlenecks across layers. Hinz
and Van de Geer (2019) introduced a histogram framework for a fine grained analysis of such
dimensions in ReLU networks. Based on this, Xie et al| (2020); Hinz (2021) obtained still tighter
upper bounds for ReLU networks. The maximum number of regions has been studied not only for
fully connected networks, but also convolutional neural networks (Xiong et all, 2020), graph neural

networks (GNNs) and message passing simplicial networks (MPSN) (Bodnar et all, po21).

Expected number of regions Although the maximum possible number of regions gives useful
complexity bounds and insights into different architectures, in practice one may be more interested
in the expected behavior for typical choices of the parameters. The first results on the expected num-
ber of regions were obtained by Hanin and RolnickK (20194a,b) for the case of ReLU networks or single-
argument piecewise linear activations. They show that if one has a distribution of parameters such
that the conditional densities of bias values are bounded and the expected gradients of activation
values are bounded, then the expected number of linear regions can be much smaller than the max-
imum theoretically possible number. Moreover, they obtain bounds for the expected number and
volume of lower dimensional linear pieces of the represented functions. These results do not directly

apply to the case of maxout units, but we will adapt the proofs to obtain corresponding results.

Regions of maxoutnetworks Most previous works focus on ReLUs or single-argument activation
functions. In this case, the linear regions of individual layers are described by hyperplane arrange-
ments, which have been investigated since the 19th century (Steinet, 1826; Buck, 1943; Zaslavsky,
1975). Hence, the main challenge in these works is the description of compositions of several lay-
ers. In contrast, the linear regions of maxout layers are described by complex arrangements that are
not so well understood yet. The study of maxout networks poses significant challenges already at
the level of individual layers and in fact single units. For maxout networks, the maximum possi-
ble number of regions has been studied by Pascanu et al) (2014); Montufar et al| (2014)); Serra et al.

(2018). Recently, Montufar et al! (2022) obtained counting formulas and sharp (asymptotic) upper
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bounds for the number of regions of shallow (deep) maxout networks. However, their focus was on

the maximum possible value, and not on the generic behavior, which we investigate here.

Related notions The activation regions of neural networks can be approached from several per-
spectives. In particular, the functions represented by networks with piecewise linear activations
correspond to so-called tropical rational functions and can be studied from the perspective of trop-
ical geometry (Zhang et al., 2018; Charisopoulos and Maragos, 2018). In the case of piecewise affine
convex nonlinearities, these can be studied in terms of so-called max-affine splines (Balestriero
et al), 2o19). A related but complementary notion of network expressivity is trajectory length, pro-
posed by Raghu et al| (2017), which measures transitions between activation patterns along one-
dimensional paths on the input space, which also leads to depth separation results. Recent work

(Hanin et all, 2021) shows that ReLU networks preserve expected length.

Contributions We obtain the following results for maxout networks.

o There are widely different numbers of linear regions that are attained with positive probability
over the parameters (Theorem 7). There is a non-trivial lower bound on the number of linear
regions that holds for almost every choice of the parameters (Theorem .8). These results
advance the maximum complexity analysis of Montufar et al! (2022) from the perspective of

generic parameters.

e For common parameter distributions, the expected number of activation regions is polyno-
mial in the number of units (Theorem f.d). Moreover, the expected volume of activation re-
gions of different dimensions is polynomial in the number of units (Theorem f.1d). These
results correspond to maxout versions of results from Hanin and Rolnick (2019b) and Hanin

and Rolnick (2019a).

o For multi-class classifiers, we obtain an upper bound on the expected number of linear pieces
(Theoremf.11) and the expected volume (Theorem R.13) of the decision boundary, along with a

lower bound on the expected distance between input points and decision boundaries (Corol-

lary g.19).

e We provide an algorithm and implementation for counting the number of linear regions of

maxout networks (Algorithm f.{).

e We present parameter initialization procedures for maxout networks maximizing the number
of regions or normalizing the mean activations across layers (similar to Glorot and Bengio
2010; He et al! 2o15), and observe experimentally that these can lead to faster convergence of

training.
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3.2 Activation regions of maxout networks

We consider feedforward neural networks with ng inputs, L hidden layers of widths ny,...,nz,
and no skip connections, which implement functions of the form f = ¢ o ¢pf 0 --- 0 ¢1. Thel-th
hidden layer implements a function ¢;: R™~-1 — R™ with output coordinates, i.e. units, given by
trainable affine functions followed by a fixed real-valued activation function, and ¢ : R™"Z — R™L+1
is a linear output layer. We denote the total number of hidden unitsby N = nj + --- + ny, and
index them by z € [N] := {1,..., N}. The collection of all trainable parameters is denoted by 6.

We consider networks with maxout units, introduced by Goodfellow et al) (2013). A rank-K
maxout unit with n inputs implements a function R" — R; x +— maxgpeg){wr - = + bi},
where wy € R" and b, € R, k € [K], are trainable weights and biases. The activation function
(s1,...,8K) + max{si,...,Sk} can be regarded as a multi-argument generalization of the
rectified linear unit (ReLU) activation function s — max{0, s}. The K arguments of the maximum
are called the pre-activation features of the maxout unit. For unit 2 in a maxout network, we denote
(2 k(x5 0) its k-th pre-activation feature, considered as a function of the input to the network.

For any choice of the trainable parameters, the function represented by a maxout network is
piecewise linear, meaning it splits the input space into countably many regions over each of which

itis linear.

Definition 3.1 (Linear regions). Let f: R™® — R be a piecewise linear function. A linear region of

f is a maximal connected subset of R on which f has a constant gradient.
We will relate the linear regions of the represented functions to activation regions defined next.

Definition 3.2 (Activation patterns). An activation pattern of a network with N rank- K maxout
units is an assignment of a non-empty set J, C [K] to each unit z € [IN]. An activation pattern
J = (Jz)zev) with 3= c1n (|| — 1) = 7 is called an r-partial activation pattern. The set of all
possible activation patterns is denoted P, and the set of r-partial activation patterns is denoted P,..
An activation sub-pattern is a pattern where we disregard all J, with | J,| = 1. The setof all possible

activation sub-patterns is denoted S, and the set of r-partial activation sub-patterns is denoted S;..

Definition 3.3 (Activation regions). Consider a network N/ with N maxout units. For any parame-

ter value 0 and any activation pattern J, the corresponding activation region is

R(J,0) := {& € R™ | argmax (. y(x;0) = J, foreachz € [N]}.
ke[K]

Foranyr € {0,...,ng} we denote the union of r-partial activation regions by

Xy (0) = | R(J;0).
JePr
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By these definitions, we have a decomposition of the input space as a disjoint union of activation
regions, R™ = LiycpR(J, ). See Figure h.]. Next we observe that for almost every choice of 6, -
partial activation regions are either empty or relatively open convex polyhedra of co-dimension .
In particular, for almost every choice of the parameters, if r is larger than ng, the r-partial activation

regions are empty. Therefore, in our discussion we only need to consider r up to nyg.

Lemma 3.4 (r-partial activation regions are relatively open convex polyhedra). Consider a maxout
network N. Letr € {0,...,no} and J € P,. Then for any 0, R(J,0) is a relatively open convex

polyhedron in R™. For almost every 0, it is either empty or has co-dimension r.

The proof of Lemma .4 is given in Section §.A. Next we show that for almost every choice of 6,

0-partial activation regions and linear regions correspond to each other.

Lemma 3.5 (Activation regions vs linear regions). Consider a maxout network N'. The set of parameter
values 0 for which the represented function has the same gradient on two distinct activation regions is a null

set. In particular, for almost every 0, linear regions and activation regions correspond to each other.

The proof of Lemma f.4 is given in Section f.Al. We note that for specific parameters, linear re-
gions can be the union of several activation regions and can be non-convex. Such a situation is more
common in ReLU networks, whose units can more readily output zero, thereby hiding the activation
pattern of the units in the previous layers.

To summarize the above observations, for almost every 6, the 0-partial activation regions are
ng-dimensional open convex polyhedra which agree with the linear regions of the represented func-
tion, and forr = 1, ..., ng the r-partial activation regions are co-dimension-r polyhedral pieces
of the boundary between linear regions. Next, we investigate the number of non-empty r-partial
activation regions and their volume within given subsets of the input space. We are concerned with
their generic numbers, where we use “generic” in the standard sense to refer to a positive Lebesgue

measure event.

3.3 Numbers of regions attained with positive probability

We start with a simple upper bound.

Lemma 3.6 (Simple upper bound on the number of r-partial activation patterns). Letr € Ng. The

number of r-partial activation patterns and sub-patterns in a network with a total of N rank- K maxout
units are upper bounded by |P,| < (TQIT{) (]7\[) KN and |S,| < (TQI:) (N) respectively.

r

The upper bound has asymptotic order O(N" KN+ in K and N. The proof of Lemma k.6is
given in Section f.4, where we also provide an exact but unhandy counting formula.
By definition, the number of r-partial activation patterns is a trivial upper bound on the number

of non-empty 7-partial activation regions for any choice of parameters. Depending on the network
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A

Activation regions Number of linear regions

&1

Figure 3.1: Left: Shown is a piecewise linear function R? — R represented by a network with a
layer of two rank-3 maxout units for a choice of the parameters. The input space is subdivided into
activation regions R(J; ) with linear regions separated by &) (6). Right: Shown is the number
of linear regions of a 3-layer maxout network over a portion of the input space as a function of a
2D affine subspace of parameter values 6(&1, {2). Shown are also two examples of the input-space
subdivisions of functions represented by the network for different parameter values. More details
about this figure are given in Section g.K. As the figure illustrates, the function taking parameters to
the number of regions is rather intricate. In this work, we characterize values attained with positive
probability and upper bound the expected value given a parameter distribution.

architecture, this bound may not be attainable for any choice of parameters. Montufar et al} (2022,
Theorems 3.7 and 3.12) obtained bounds for the maximum number of linear regions. For a shallow
network with 1o inputs and a single layer of n; rank- K maxout units it has order O((n; K)™) in
K and ny, and for a deep network with ng inputs and L layers of n1, ..., ny rank- K maxout units
it has order @(Hlel (nK)™)in K and nq,...,nr. Hence the maximum number of non-empty
activation regions can be very large, especially for deep networks.

Intuitively, linear regions have a non-zero volume and cannot ‘disappear’ under small pertur-
bations of parameters. This raises the question about which numbers of linear regions are attained
with positive probability, i.e. over positive Lebesgue measure subsets of parameter values. Figure.1
shows that the number of linear regions of a maxout network is a very intricate function of the pa-
rameter values.

For a network with ng inputs and a single layer of n; ReLUs, the maximum number of linear
regions is Z;Lio (7;.1), and is attained for almost all parameter values. This is a consequence of the

genericbehavior of hyperplane arrangements (see Buck, M; Zaslavsky, |1_9_25]; Montufar et al), 2014).

In contrast, shallow maxout networks can attain different numbers of linear regions with positive
probability. The intuitive reason is that the nonlinear locus of maxout units is described not only by
linear equations (w;, ) +b; = (wj, x) + b; butalso linear inequalities (w;, ) +b; > (wg, x) + by.

See Figure .4 for an example. We obtain the following result.

Theorem 3.7 (Numbers of linear regions).
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o Consider a rank- K maxout unit with ng inputs. This corresponds to a network with an input layer
of size ng and single maxout layer with a single maxout unit. Foreach 1 < k < K, there is a set of
parameter values for which the number of linear regions is k. Formin{K,ng + 1} < k < K, the

corresponding set has positive measure, and else it is a null set.

o Consider a layer of n1 rank- K maxout units with ng inputs. This corresponds to a network with
a single maxout layer, L = 1, and n;, = mny. For each choice of 1 < kyi,...,k,, < K,
there are parameters for which the number of linear regions is Z;Lio ZSG([njﬂ) [Licg(ki —1). For

min{ K, no+1} < ki,..., k,, < K, thecorresponding set has positive measure. Here S € (["-ﬂ)

J
means that S is a subset of [n1] := {1, ...,n1} of cardinaliry | S| = j.
o Consider a network with ng inputs and L layers of ny, . .. ,np, rank- K maxout units, K > 2, Z—(’)
even. Then, for each choiceof 1 < k;; < K,i =1,...,n9,1 = 1,..., L, there are parameters

for which the number of linear regionsis [ [, [, (7t (ki — 1) + 1). There s a positive measure

subset of parameters for which the latter is the number of linear regions over (0, 1)™0.

The proof is provided in Section f.B. The result shows that maxout networks have a multitude
of positive measure subsets of parameters over which they attain widely different numbers of lin-
ear regions. In the last statement of the theorem we consider inputs from a cube, but qualitatively
similar statements can be formulated for the entire input space.

There are specific parameter values for which the network represents functions with very few
linear regions (e.g., setting the weights and biases of the last layer to zero). However, the smallest

numbers of regions are only attained over null sets of parameters:

Theorem 3.8 (Generic lower bound on the number of linear regions). Consider a rank- K maxout
network, K > 2, with ng inputs, n1 units in the first layer, and any number of additional nonzero width
layers. Then, for almost every choice of the parameters, the number of linear regions is at least Z?io (7;1)
and the number of bounded linear regions is at least (";gl)

This lower bound has asymptotic order Q(n}°) in K and ny, ..., np. The proof is provided in
Section B.B. To our knowledge, this is the first non-trivial probability-one lower bound for a maxout
network. Note that this statement does not apply to ReLU networks unless they have a single layer
of ReLUs. In the next section we investigate the expected number of activation regions for given

probability distributions over the parameter space.

3.4 Expected number and volume of activation regions

For the expected number of activation regions we obtain the following upper bound, which corre-

sponds to a maxout version of (Hanin and Rolnick, 2019b, Theorem 10).
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Theorem 3.9 (Upper bound on the expected number of partial activation regions). Let N be a fully-
connected feed-forward maxout network with ng inputs and a total of N rank K maxout units. Suppose we

have a probability distribution over the parameters so that:
1. The distribution of all weights has a density with respect to the Lebesgue measure on R*Weights,

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the values

of all other weights and biases.

3. Thereexists Cgrag > 050 that for any t € N and any pre-activation feature (. j,

sup E[[[VC. k(@) £ Cgrag-

rz€R™0

4. There exists Cyias > 0 so that for any pre-activation features (1, . . . , (; from any neurons, the con-

ditional density of their biases py, ..., given all the other weights and biases satisfies

t
Sup  Pby,....bs (blv cee 7bt) < Cbias'
b1,...,be€ER

Fixr € {0,...,no}andletT = 25Cgradcbias- Then, there exists 69 < 1/(2Cgrad Chias) such that for all
cubes C C R™ with side length § > g we have

rK\ (N N—
E[# r-partial activation regions of N in (] ( 2r ) ( T )K b N<=no

vol(C) - (TIZV;’;O(’;}? )
Tng! I

NZTLO

Here the expectation is taken with respect to the distribution of weights and biases in N. Of particular interest

is the case r = 0, which corresponds to the number of linear regions.

The proof of Theorem R.d is given in Section R.H. The upper bound has asymptotic order
O(N™ K3~} in K and N, which is polynomial. In contrast, Montufar et al! (2022) shows that
the maximum number of linear regions of a deep network of width n is @((nK)%ON), which
for constant width is exponential in N; see Section f.B. We present an analog of Theorem f.d for
networks without biases in Section 3.G.

When the rank is ' = 2, the formula coincides with the result obtained previously by Hanin
and Rolnick (2o19b, Theorem 10) for ReLU networks, up to a factor K. For some settings, we expect
that the result can be further improved. For instance, for iid Gaussian weights and biases, one can
show that the expected number of regions of a rank K maxout unit grows only like log K, as we
discuss in Section §.d.

We note that the constants Chas and Cgrag only need to be evaluated over the inputs in the region

C. Intuitively, the bound on the conditional density of bias values corresponds to a bound on the

45



Chapter 3. On the expected complexity of maxout networks

density of non-linear locations over the input. The bound on the expected gradient norm of the
pre-activation features is determined by the distribution of weights. We provide more details in
Section .K.

For the expected volume of the 7-dimensional part of the non-linear locus, we obtain the follow-

ing upper bound, which corresponds to a maxout version of (Hanin and Rolnick, 20194, Corollary 7).

Theorem 3.10 (Upper bound on the expected volume of the non-linear locus). Consider a bounded
measurable set S C R"™ and the settings of Theorem @ with constants Cgyaq and Clias evaluated over S.
Then, foranyr € {1,...,n0},

E[volyy—r(Xnr N S)] (TK\ (N
) < . .
voly, (S) < (2CgraaCiias) 2r r

The proof of Theorem is given in Section .0 When the rankis K = 2, the formula coincides

with the result obtained previously by Hanin and Rolnick (20194, Corollary 7) for ReLU networks. A

table comparing the results for maxout and ReLU networks is given in Section f.H.

3.5 Expected number of pieces and volume of the decision boundary

In the case of classification problems, we are primarily interested in the decision boundary rather
than the overall function. We define an M -class classifier by appending an argmax gate to a network
with M outputs. The decision boundary is then a union of certain r-partial activation regions for
the network with a maxout unit as the output layer. For simplicity, here we present the results for
the ng — 1-dimensional regions, which we call ‘pieces’, and present the results for arbitrary values
of r in Section f.H. The number of pieces of the decision boundary is at most equal to the number
of activation regions in the original network times (]\2/[) A related statement appeared in Alfarra
et al) (2020). For specific choices of the network parameters, the decision boundary does intersect
most activation regions and can have as many as Q(M? Hle (nyK)™0) pieces (see Section f.H).
However, in general, this upper bound can be improved. For the expected number of pieces and
volume of the decision boundary, we obtain the following results. We write App for the decision
boundary, and Apg - for the union of r-partial activation regions which include equations from the

decision boundary (generically these are the co-dimension-r pieces of the decision boundary).

Theorem 3.11 (Upper bound on the expected number of linear pieces of the decision boundary). Let
N be a fully-connected feedforward maxout network, with ng inputs, a total of N rank-K maxout units,

and M linear output units used for multi-class classification. Under the assumptions of Theorem B.d, there
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exists 69 < 1/(2CgradChias) such that for all cubes C' C R™ with side length 6 > &y,

#linear pieces in the M\ #N
[decision boundary of A in C] ( 2 )K , N <mng
VOI(C) B (24Cgradcbias)n0 (QKN)"O_I M K(n()—l)
(no—1)! (2 )(Q(no—l))’ N =mng

Here the expectation is taken with respect to the distribution of weights and biases in /.

For binary classification, M = 2, this bound has asymptotic order O((K3N)™~1) in K and

N. For the expected volume, we have the following.

Theorem 3.12 (Upper bound on the volume of the (ny — r)-skeleton of the decision boundary).

Consider a bounded measurable set S C R™. Consider the notation and assumptions of Theorem §.d,

whereby the constants Cgrag and Clias are over S. Then, foranyr € {1,...,ng} we have
min{M—1,r} .
E[volyy—r(Xppr NS)] M K(r—1) N
: < (2C T G ia " . . A
volng (S) < (2CgaaChia) ; i+1)\20r—i) ) \r—i

Moreover, the expected distance to the decision boundary can be bounded as follows.

Corollary 3.13 (Distance to the decision boundary). Suppose N is as in Theorem R.g. For any compact
set S C R0 let x be a uniform point in S. There exists ¢ > ( independent of S so that

C
> —,
26lgradcfbias]\41n+ m

[E[distance(z, Xpg)]

wherem = min{M — 1,n¢}.

The proofs are presented in Section f.H, where we also extend Theorem f.11 to address the ex-
pected number of co-dimension-r pieces of the decision boundary. A corresponding result applies

for the case of ReLU networks (see details in Section @)

3.6 Experiments

In the experiments we used fully-connected networks. We describe the network architec-
ture in terms of the depth and total number of units, with units evenly distributed across the
layers with larger lower layers if needed. For instance, a network of depth 3 with 110 units
has 3 hidden layers of widths 37,37,36. Details and additional experiments are presented
in Section B.K. The computer implementation of the key functions is available on GitHub at

https://github.com/hanna-tseran/maxout_complexity.

Initialization procedures We consider several initialization procedures detailed in Section i.]: 1)

ReLU-He initializes the parameters as iid samples from the distribution proposed by He et al| (2015)
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Table 3.1: Standard deviation of the weight distribution for maxout-He initialization.

MAXOUT RANK STANDARD DEVIATION
2 V1/m
V2r/(V3 4 2m)m)
/(B + m)my)

5 /05555 1
ReLU V2/m

w

.

for ReLUs. 2) Maxout-He follows a similar reasoning to normalize the expected norm of activation
vectors across layers but for the case of maxout networks. The weight distribution has standard de-
viation depending on K and the assumed type of data distribution, as shown in Tablef.1. 3) “Sphere”
ensures each unit has the maximum number of regions. 4) “Many regions” ensures each layer has

the maximum number of regions.

Algorithm for counting activation regions Several approaches for counting linear regions of
ReLU networks have been considered (e.g., Serra et all, 2018; Hanin and Rolnick, 2o1gb; Serra and
Ramalingam, 2o2d; Kiong et all, 2020). For maxout networks, we count the activation regions and
pieces of the decision boundary by iterative addition of linear inequality constraints and feasibility

verification using linear programming. Pseudocode and complexity analysis are provided in Sec-

tion @

Number of regions and decision boundary for different networks Figure 3.2 shows a close
agreement, up to constants, of the theoretical upper bounds on the expected number of activation
regions and on the expected number of linear pieces of the decision boundaries with the empirically
obtained values for different networks. Further comparisons with constants and different values
of K are provided in Section R.K. Figure .4 shows that for common parameter distributions, the
growth of the expected number of activation regions is more significantly determined by the total
number of neurons than by the network’s depth. In fact, we observe that for high rank units and cer-
tain types of distributions, deeper networks may have fewer activation regions. We attribute this to
the fact that higher rank units tend to have smaller images (since they compute the max of more
pre-activation features). Figure f.4 shows how ng and K affect the number of activation regions.
For small input dimension, the number of regions per unit tends to be smaller than K. Indeed, for

iid Gaussian parameters the number of regions per unit scales as log K (see Section .d).

Number of regions during training We consider the 10-class classification task with the MNIST

dataset (LeCun and Cortes, 2010) and optimization with Adam (Kingma and Ba, 2015) using different
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initialization strategies. Notice that for deep skinny fully connected networks the taskis non-trivial.
Figure §.4 shows how the number of activation regions evolves during training. Shown are also the
linear regions and decision boundaries over a 2D slice of the input space through 3 training data
points. Figure .6 shows the training loss and accuracy curves for the different initializations. We
observe that maxout networks with maxout-He, sphere, and many regions converge faster than with

naive He initialization.

Number of activation regions Number of pieces in the decision boundary

1 —e— predicted growth
10%; --=- 1 layer

i -+~ 5layers

] 10 layers
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—
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Number of activation regions
Number of linear pieces
S
o

10 30 50 70 9 1o 130 150 170 190 20 30 40 50 60 70 80 90 100
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Figure 3.2: Shown are means and stds for 30 maxout-He normal initializations for networks with
K = 2andng = 2. Left: Comparison of the theoretically predicted growth O(N" /ng!) and
the experimentally obtained number of regions for networks with different architectures. Right:
Comparison of the theoretically predicted growth O(N) and the experimentally obtained number
of linear pieces of the decision boundary for networks with different architectures.

3.7 Discussion

We advance a line of analysis recently proposed by Hanin and Rolnick (2019a,b), where the focus lies
on the expected complexity of the functions represented by neural networks rather than worst case
bounds. Whereas previous works focus on single-argument activations, our results apply to net-
works with multi-argument maxout units. We observe that maxout networks can assume widely
different numbers of linear regions with positive probability and then computed an upper bound
on the expected number of regions and volume given properties of the parameter distribution, cov-
ering the case of zero biases. Further, taking the standpoint of classification, we obtained corre-
sponding results for the decision boundary of maxout (and ReLU) networks, along with bounds on
the expected distance to the decision boundary.

Experiments show that the theoretical bounds capture the general behavior. We present al-
gorithms for enumerating the regions of maxout networks and proposed parameter initialization
strategies with two types of motivations, one to increase the number of regions, and second, to nor-
malize the variance of the activations similar to Glorot and Bengig (2010) and He et al! (2015), but

now for maxout. We observed experimentally that this can improve training in maxout networks.
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Figure 3.3: Effect of the depth and number of neurons on the number of activation regions at initial-
ization for networks with ng = 2. Shown are means and stds for 30 maxout-He normal initializa-

tions.
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Figure 3.4: Left: Plotted is #regions'/ for a shallow network with N = 5. The multiplicative con-
tribution per unit increases with the input dimension until the trivial upper bound K is reached.
Right: Number of regions of 3 layer networks with ng = 2 depending on K. Shown are means and

stds for 30 ReLU-He normal initializations.

Limitations

In our theory and experiments, we have considered only fully connected networks.

The analysis and implementation of other architectures for experiments with more diverse datasets

are interesting extensions. By design, the results focus on parameter distributions that have a den-

sity.
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Figure 3.5: Evolution of the linear regions and the decision boundary during training on the MNIST
dataset in a slice determined by three random points from different classes. The network had 100
maxout units of rank K = 2, and was initialized using maxout-He normal initialization. The right
panelis for the 3 layer network. As expected, for the shallow rank-2 network, the number of regions
is approximately constant. For deep networks, we observe a moderate increase in the number of
regions as training progresses, especially around the training data. However, the number of regions
remains far from the theoretical maximum. This is consistent with previous observations for ReLU
networks. There is also a slightincrease in the number of linear pieces in the decision boundary, and
at the end of training the decision boundary clearly separates the three reference points.

Future work Infuture work, we would like to obtain a fine-grained description of the distribution
of activation regions over the input space depending on the parameter distribution and explore the
relations to the speed of convergence and implicit biases in gradient descent. Of significant interest
would be an extension of the presented results to specific types of parameter distributions, including

such which do not have a density or those one might obtain after training.
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Figure 3.6: Comparison of training on MNIST with different initializations. All networks had 200
units, 10 layers, and maxout networks had rank K = 5. Shown are averages and std (barely no-

ticeable) over 30 repetitions. The type of initialization has a significant impact on the training time

of maxout networks, with maxout-He, sphere, and many regions giving better results for deep net-

works and larger maxout rank (more details on this in Section @)
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Proofs and experiment details

Proofs and experiment details are organized as follows.
o B.A Proofs related to activation patterns and activation regions.

R.H Proofs related to the numbers of regions attained with positive probability.

k.d Expected number of regions for large rank.

R.Dl Proofs related to the expected volume of activation regions.

R.H Proofs related to the expected number of activation regions.

k.E Upper bounding the constants.

e .G Proofs related to the expected number of regions for networks with zero bias.

o B.HProofs related to the decision boundary.

k.1 Algorithm for counting regions and pieces of the decision boundary.

k. Initialization procedures.

R.K Details on the experiments and additional experiments.

3.A Proofs related to activation patterns and activation regions

3.A.1  Number of activation patterns

Lemma 3.6 (Simple upper bound on the number of r-partial activation patterns). Letr € Ny. The

number of T-partial activation patterns and sub-patterns in a network with a total of N rank- K maxout
units are upper bounded by | P,| < (7»2[:) (]X) KN="and |S,| < (T;f) (N) respectively.

T

Proof of LemmaR.6. To getan r-partial activation pattern one needs at most 7 neurons. The number
of ways to choose them is (];]) The number of ways to choose a pre-activation feature that attains

a maximum in the rest of neurons is KV ~". The r chosen neurons have in total 7 K pre-activation
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features. Out of them, we need to choose r features that attain maximum, and r additional features
to construct the pre-activation pattern, so 2r features in total. We ignore the restriction that there
needs to be atleast one feature from each neuron, which gives us an upper-bound r ( ) Notice that
this way we also count r-partial patterns that require less than r neurons. Combining everything,

we get the desired result. For the sub-patters, we simply ignore the term K"~ ", O

We will use the above upper bound in our calculations due to its simplicity. For completeness,

we note that the exact number of partial activation patterns can be given as follows.

Proposition 3.14 (Number of r-partial activation patterns). For a network with a total of N rank- K

maxout units the number of distinct r-partial activation patterns is

[Prl = > <Ng,.. N 1>[h <1+3>Nj’

(No,...,NK,1)€N5(2 =0
S N =N N =

<

If K = 2 then the summation index takes only one value (No, N1) = (N — r,r) and the expression

simplifies to (N r) N,

Proof. We have N neurons. For a given activation pattern, for j = 0,..., K — 1, denote N; the
number of neurons with (1+ j) pre-activation features attaining the maximum. Since every neuron
hasindecisionintherange0, ..., K —1,wehave ZJK:_OI N; = N. Ther-partial activation patterns
are precisely those for which ) j JNj = r. The number of distinct ways in which we can partition
the set of IV neurons into K sets of cardinalities Ny, ..., N _1 is precisely ( NNK ) For each
J, the number of ways in which a given neuron can have (1 + j) pre-actlvatlon features attaining

the maximum is (1[_;.). OJ

3.A.2 Generic correspondence between activation regions and linear regions

For a fixed activation pattern J, a computation path vy is a path in the computation graph of the
network A/ that goes from input to the output through one of the units in each layer, where v =
(Y0, Y15 - -+, VL), V1 € [nu] X [K] specifies a unit and a corresponding pre-activation feature in layer
[. For any input « in the activation region R(.J, #), the gradient with respect to = can be expressed

through the computation paths as

L+1
0
— L+t L 1 _ l
VN (z,0) W]( )W]E ). W]S ), —i./\/'(:z:,G) e g | | w! ),

pathsy [=1
starting at ¢

@

wherein W,/ € R™*™-1 ig a piecewise constant matrix valued function of the input x with rows

corresponding to the pre-activation features that attain the maximum according to the pattern J,
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(@

and w,’ € R are corresponding weights on the edge of -y between the layer (I — 1) and [, again
depending on J. For a simple example of when one linear region is a union of several activation
regions in a maxout network, consider a network with one of the weights in the single linear output
unit set to zero. Such a situation can happen, for instance, at initialization, though with probability
0. Then, switching between the maximums in the unit in the previous layer to which this weight
connects will not be visible when we compute the gradient, and several activation regions created

by the transitions between maximums in this unit will become a part of the same linear region.

Lemma 3.5 (Activation regions vs linear regions). Consider a maxout network N. The set of parameter
values 0 for which the represented function has the same gradient on two distinct activation regions is a null

set. In particular, for almost every 0, linear regions and activation regions correspond to each other.

Proof of the Lemma}.4. Consider two different non-empty activation regions corresponding to acti-

vation patterns .J; and J5 for which VA (z; 0) has the same value. This means that n( equations of

the form
L+1 L+1
(0 — H 0]
> IMwP= > 11+
paths yel'y ; [=1 pathsyel'z ; =1

are satisfied, where I'1 ;, I'2 ; are collections of paths starting at ¢ corresponding to the activation
patterns J1 and Jy respectively. For different values of 7 the sets of paths differ only at the input
layer.

Based on this equation, there exists ¢, ; € {31} and a non-empty collection of paths I'; (the

symmetric difference of I'1 ; and I'y ;) so that

L+1

Z Cryi H wgl) =0.
=1

pathsyel’;

This is a polynomial equation in the weights of the network. Each monomial occurs either with
coefficient 1 or —1. In particular, this polynomial is notidentically zero. The zero set of a polynomial
is of measure zero on R*"i8ht ynless it is identically zero, see e.g. Caron and Traynor (2005). We
have a system of ng such equations (one for each 7). The intersection of the solution sets is again
a set of measure zero. The total number of pairs of activation regions is finite, upper bounded by
KN
(%
two activation regions have the same gradient values has measure zero with respect to the Lebesgue

measure on R¥Weights O

). A countable union of measure zero sets is of measure zero, thus the set of weights for which

3.A.3 Partial activation regions

Now we introduce several objects that are needed to discuss r-partial activation regions.
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Definition 3.15. Fix a value 6 of the trainable parameters. For a neuron zin N and a set J, C [K],

the J,-activation region of a unit z is

H(J2;0) == {xo € R™ | argmax (; p(2y02)-1;0) = J.}.
ke[K]
More generally, for a set of neurons Z = {z} and a corresponding list of sets Jz = (J,).cz, the

corresponding Jz-activation region is

H(Jz;0) = () H(J=;0). (31)

z2€EZ

If we specify an activation pattern for every neuron, J|yj, so that Z = [N], then we write
R(J[N]§ 0) = H(J[N]§ 0).

Recall that an activation pattern Jjy) with with the property that ) _(|.J.| — 1) = ris called an
r-partial activation pattern. To distinguish such patterns, we denote them by J” € P,. The union

of all corresponding activation regions is denoted

Xnr(0)= | R0
JTEPT

Lemma 3.4 (r-partial activation regions are relatively open convex polyhedra). Consider a maxout
network N. Letr € {0,...,no} and J € P,. Then for any 0, R(J,0) is a relatively open convex

polyhedron in R™0. For almost every 0, it is either empty or has co-dimension r.

Proof of LemmaR.4. Fix anr-partial activation pattern J” € P,.. Over the activation region R (.J; ),
the k-th pre-activation feature of each neuron z is a linear function of the input to the network,

namely
SR +bl, = (l(z))(w(l(z)—1) o (w(l) Sz 4 b(l)) S b(l(z)—l)) + b(zl}:))’

where w? . and b} ,, k € [K] denote the weights and biases of this linear function, which depend
on the weights and biases and activation values of the units up to unit 2. For each z specify a fixed

element jg € .J,. The activation region can be written as

ﬂ {x eR™ |w}; -x+b, =wi; -x+0b; Vie.\{j}h
z€[N]
w4 bl >wh, x4 bl Vie K]\ J.}.

This means that an 7-partial activation region is determined by a set of strict linear inequalities and

r linear equations. The equations are represented by vectors v, ; = (w} ; , b, ) — (w} ;, 07 ;) for
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allj € J, \ {jo} for all z for which |J,| > 1. For generic parameters these equations are linearly
independent. Indeed, the vectors being linearly dependent means that there is a matrix V' ' V, where
V has rows v, j, with vanishing determinant. By similar arguments as in the proof of Lemma k.d,
the set of parameters solving a polynomial system has measure zero. Hence, for generic choices of
parameters, the 1 linear equations are independent and the polyhedron will have a co-dimension r

(or otherwise be empty). O

The same result can be obtained for r-partial activation regions of ReLU networks since ReLU
activation regions can be similarly written as a system of linear equations and inequalities.

We can make a statement about the shape of r-partial activation regions of maxout networks.
Recall that a convex polyhedron is the closure of the solution set to finite system of linear inequalities.
If it is bounded, it is called a convex polytope. The dimension of a polyhedron is the dimension of
the smallest affine space containing it.

The next statement follows immediately from Lemma §.4.

Lemma 3.16 (X, consists of (ng — r)-dimensional pieces). With probability 1 with respect to the
distribution of the network parameters 0, for any x € X/, there exists € > 0 (depending on x and 0) s.t.
X\ intersected with the e ball B, (x) is equal to the intersection of this ball with an (ng — ) -dimensional
affine subspace of R™°.

Corollary 3.17 (r-partial activation regions are relatively open convex polyhedra). Recall that an an
r-partial activation sub-pattern J € S, isalist J = (J.).cz of sets J, C [K], z € Z C [N] with
|J:| > Tand} . ,(|J.| — 1) = r. For almost all choices of the parameter (i.e., except for a null set with

respect to the Lebesgue measure),

voly,—r (Xnr(0)) = Z vol, r(H(J; ).
JES,

Proof of Corollary g.17. Given J € S,, wedenote Z C [N] the corresponding list of neurons. Using
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the notion of indecision loci from Definition .14, we can re-write X ,.(6) as

Xy (0)= | R(J;:0) = | H(J;0) = Uﬂ?—[Jz,H

JePr JeP, JePr z€[N
= U | HU=z0N () H(T:06)
JEP, |2€Z z€[N\Z
= [NHTz0N (| H(J:0)
Jjes, |#€Z J.€[K],2€[N\Z z€[N]\Z
= [N Hz0 N ﬂUH J. = {k};0)
Jes, |2€4 287 ke|K

Therefore,

volng—r (Ans(0)) = > volyy— | [ HT:0)0 () | H(J: = {k};0)

Jes, z€Z 2¢Z ke|K]

Cc
Notice that (ﬂZ¢Z Ukery H(J= = {k}; 0)) is a zero measure set in X, (6), because over
that set, by Lemma the co-dimension of the corresponding activation regions is larger than r.

Therefore, for any given J = (J:)zez € S,
volng—r | [V H(T0) N [ | H(T = {k};0) | =volp,—, (ﬂ H(JZ;9)> .
z€Z 2¢ 7 ke[K) 2€Z

This completes the proof. O

3.B  Proofs related to the generic numbers of regions

3.B.1 Number of regions and Newton polytopes

We start with the observation that the linear regions of a maxout unit correspond to the upper ver-

tices of a polytope constructed from its parameters.

Definition 3.18. Consider a function of the form f: R" — R; f(z) = max{w; - z + b;},
where w; € R"and b; € R,j = 1,..., M. The lifted Newton polytope of f is defined as Py :=
conv{(wj,b;) € R*1: j=1,...,M}.

Definition 3.19. Let P be a polytope in R"*! and let F be a face of P. An outer normal vector of F
isavectorv € R"* ! with (v,p—¢q) > Oforallp € F,q € P\ Fand (v,p—q) = Oforallp,q € F.
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[ Rex{-1}

Figure 3.7: The linear regions of a function f(x) = max;{(w;,x) + b;} correspond to the lower
vertices of the polytope P]'c = conv;{(wj;, —b;)} C R0+ or, equivalently, the upper vertices of
the lifted Newton polytope Py = conv;{(w;,b;)} C R™T! The linear regions of f can also be
described as the intersection of the normal fan Np} , consisting of outer normal cones of faces of PJ’C,

with the affine space R x {—1}.

The face F'is an upper face of P if it has an outer normal vector v whose last coordinate is positive,

Up+1 > 0. Itis a strict upper face if each of its outer normal vectors has a positive last coordinate.

The Newton polytope is a fundamental object in the study of polynomials. The naming in the
context of piecewise linear functions stems from the fact that piecewise linear functions can be re-
garded as differences of so-called tropical polynomials. The connections between such polynomials
and neural networks with piecewise linear activation functions have been discussed in several re-
cent works (Zhang et al), 2018; Charisopoulos and Maragos, 2018; Alfarra et al), 2020). For details
on tropical geometry, see (Maclagan and Sturmfels, 2015; Joswig, 2022). Although in the context of
(tropical) polynomials the coefficients are integers, such arestriction isnot needed in our discussion.

A convex analysis interpretation of the Newton polytope can be given as follows. Consider a
piecewise linear convex function f: R” — R; x — max;{w; -« + b;}. Then the upper faces of its
lifted Newton polytope Py correspond to the graph {(z*, — f*(2*)): 2* € R"™ N dom(f*)} of the
negated convex conjugate f*: R” — R; * — sup,cpn (z, 2*)— f (), whichis a convex piecewise
linear function. This implies that the upper vertices of Py are the points (w;, b;) € R™ ! for which
f(x) = wj - x+bj over aneighborhood of inputs. Hence the upper vertices of the Newton polytope
correspond to the linear regions of f. Thisrelationship holds more generally for boundaries between
linear regions and other lower dimensional linear features of the graph of the function. We will use

the following result, which is well known in tropical geometry (see [oswig, 2022).

Proposition 3.20 (Regions correspond to upper faces). The r-partial activation regions of a function
f(x) = maxj{w; - & + b; } correspond to the r-dimensional upper faces of its lifted Newton polytope Pr.

Moreover, the bounded activation regions correspond to the strict upper faces of Pr.

The situation is illustrated in Figure 7.
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N

Rn[) I

Figure 3.8: A layer of maxout units of rank ' > 3 attains several different numbers of linear re-
gions with positive probability over the parameters. For a layer with two rank-3 maxout units, some
neighborhoods of parameters give 6 linear regions and others 9, with nonlinear loci given by per-
turbations of the red-pink and red-darkred lines.

3.B.2 Bounds on the maximum number of linear regions

For reference, we briefly recall results providing upper bounds on the maximum number of linear
regions of maxout networks. The maximum number of regions of maxout networks was studied by
Pascanu et al! (2014); Montufar et all (2014)), showing that deep networks can represent functions
with many more linear regions than any of the functions that can be represented by a shallow net-
work with the same number of units or parameters. Serra et al| (2018) obtained an upper bound
for deep maxout networks based on multiplying upper bounds for individual layers. These bounds
were recently improved by Montifar et al! (2022), who obtained the following result, here stated in

a simplified form.
Theorem 3.21 (Maximum number of linear regions, Montufar et al|2022).

e For a network with ng inputs and a single layer of ny rank- K maxout units, the maximum number

of linear regionsis > 2, (7;1) (K —1)7.

o For a network with ng inputs and L layers of n1, . .., ny, rank-K maxout units, if n < ng, 7t

even, and e; = min{ng,...,n;_1}, the maximum number of linear regions is lower bounded by
HZL:1(%(K — 1) + 1)™ and upper bounded by Hlel Z;lzo (7;1) (K —1)7.

3.B.3 Numbers of regions attained over positive measure subsets of parameters

Alayer of maxout units can attain several different numbers of linear regions with positive probabil-
ity over the parameters. This is illustrated in Figure §.8. We obtain the following result, describing
numbers of linear regions that can be attained by maxout units, layers, and deep maxout networks

with positive probability over the parameters.
Theorem 3.7 (Numbers of linear regions).

o Consider a rank- K maxout unit with ng inputs. This corresponds to a network with an input layer
of size ng and single maxout layer with a single maxout unit. Foreach 1 < k < K, there is a set of
parameter values for which the number of linear regions is k. Formin{K,ng + 1} < k < K, the

corresponding set has positive measure, and else it is a null set.
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e Consider a layer of ny rank- K maxout units with ng inputs. This corresponds to a network with
a single maxout layer, L = 1, and n;, = mny. For each choice of 1 < ky,...,kn, < K,

there are parameters for which the number of linear regions is Z?io Zse([”ll) [Lics(ki —1). For
j

min{K,no+1} < ky,..., kn, < K, thecorresponding set has positive measure. Here S € ([7;.1})

means that S is a subset of [n1] := {1, ...,n1} of cardinality | S| = j.

o Consider a network with ng inputs and L layers of ny, . . ., ny, rank- K maxout units, K > 2, %
even. Then, for each choiceof 1 < k;; < K,i =1,...,n0,l = 1,..., L, there are parameters
for which the number of linear regions is HZL:1 [T, (7t (ki — 1) + 1). Thereis a positive measure

subset of parameters for which the latter is the number of linear regions over (0, 1)™°.

The strategy of the proof is as follows. We first show that there are parameters such that indi-
vidual rank- K’ maxout units behave as rank-k maxout units, for any 1 < k < K, and there are
positive measure subsets of the parameters for which they behave as rank-k maxout units, for any
n+1 < k < K. Further, there are positive measure subsets of the parameters of individual rank- K’
maxout units for which, over the positive orthant RY ;, they behave as rank-k maxout units, for any
1 < k < K. Then we use a similar strategy as Montufar et al! (2022) to construct parameters of a

network with units of pre-specified ranks which attain a particular number of linear regions.

Proposition 3.22. Consider a rank- K maxout unit with n inputs restricted to R% . Forany1 < k < K,
there is a positive measure subset of parameters for which the behaves as a rank-k maxout unit. Moreover,
this set can be made to contain parameters representing any desired function that can be computed by a

rank-k maxout unit.

Proof. We need to show that for any choices of (w;, b;),7 € [k, there are generic choices of (w;, b;),
j € [K]\ [k], so that for each J C [K|with J Z [k], the corresponding activation region R (.J, )
does not intersect RZ ;. Notice that, if j € J \ [k], then the corresponding activation region R(.J, 6)
is contained in the ar;angement consisting of hyperplanes Hj; = {z: (w; —w;)-z+(b;j—b;) = 0},
i € J\{j}. Foreachj € [K]\ [k], wechoose w; = je(—1,...,—1)+¢;,b; = —jc’ + ¢} for some
¢ > 2max{||willoo: @ € [k]}, ¢’ > 2max{b;: i € [k]} and small¢; € R, € € R. Then, for each
Jj € [K]\ [k]landi € [K],j < j, the hyperplane H; has a normal vector (w; — w;) € Rcpandan

intercept b; — b; < 0, and hence it does not intersect RY ;. ]
We are now ready to prove the theorem.

Proof of Theorem .7 Single unit. Consider a maxout unit max;e(g){w; - T +0b; }. To have this behave
as arank-k maxout unit, 1 < k < K, we simply set (w;, bj) = (w1,b1 — 1),j € [K]\ [k]. This
is a non-generic choice of parameters. Consider now a rank-k maxout unit with n + 1 < k and
generic parameters (w;, b;), ¢ € [k]. We want to show that there are generic choices of (w;, b;),
j € [K]\ [k] so that max;e(g{w; -  + bj} = max,ep{w; -z + b;} forallz € R™. In view of
Proposition B.2d, this is equivalent to (w;, b;), j € [K] \ [k] not being upper vertices of the lifted
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Newton polytope P = conv{(wj, b;j): j € [K]}. Since any generic n + 1 points in R" are affinely
independent, we have that the convex hull conv{w; € R": i € [k]} has full dimension n. Hence,
anyw; = 1 Y ick) Wi +€jandbj = min;ep {b;} — 1+ € with sufficiently smalle; € R", €} € R,
J € [K]\ [K] are strictly below conv{(wj, b;): @ € [k]} and are not upper vertices of P.

Single layer. We use the previous item to obtain 71 maxout units of ranks k1, .. ., ky,, either in
the non-genericorin the generic cases. Then we apply the construction of parameters and the region
counting argument from Montufar et al! (2022, Proposition 3.4) to this layer, to obtain a function
with 3 70 ng([njﬂ) [Licg(ki — 1) linear regions. For each of the units i = 1,...,7n, one may
choose a generic vector v; € R™ and define the weights and biases of the pre-activation features as
wi; = kilvl and b;; = —g(kli +¢€),j=1,...,k,where g: R — Ris any strictly convex function
and ¢; is chosen generically. Then the non-linear locus of each unit consists of k; — 1 parallel hy-
perplanes with a generic shift €;, and the normal vectors v; of different units are in general position.
The number of regions defined by such an arrangement of hyperplanesin R™ can be computed using
Zaslavsky’s theorem, giving the indicated result. It remains to show that, forng + 1 < ky, ..., ky,,
there are positive measure perturbations of these parameters that do change the number of regions.
By the lower semi-continuity discussed in Section .4, the number of regions does not decrease for
sufficiently small generic perturbations of the parameters. To show that it does not increase, we
note that, by Theorem this number of regions is the maximum that can be attained by a layer of
n1 maxout units of ranks k1, . .., k.

Deep network. For the first statement, we use the first item to obtain maxout units of any desired
ranks1 < k;; < K,l=1,...,L,i=1,...,n;,andthenapplythe construction of parameters from
Montufar et al) (2022, Proposition 3.11) to this network, to obtain the indicated number of regions.

For the second statement, we use Proposition to have the units behave as maxout units of
0,1 -
1,...,n0,7 = 1,..., Z—é Fori = 1,...,ng, the i-th block consists of Z—é maxout units of rank

any desired ranks over [0, 1]™. For the [-th layer, we divide the n; units into ng blocks x

k1;. We can choose the weights and biases so that over [0, 1]™9, the nonlinear locus of the i-th block

(2 M

idr o Tm ) consists of %(kh — 1) parallel hyperplanes with normal ¢;, and the alternating

sum Z;”Z/IHO (— 1)jasl(»é-) is a zig-zag function along the direction e; which maps (0, 1) to (0, 1), and
maps any pointin R"0\ [0, 1] to a pointin R\ [0, 1]. In this way, the [-th layer, followed by a linear
layer R™ — R™, maps (0, 1)" onto (0, 1)" ina[;22; (;;* (ki — 1) +1) to one manner. Sufficiently
small perturbations of the parameters do not affect this general behavior. The composition of L such

layers gives the desired number of regions over (0, 1)™0. O

3.B.4 Minimum number of activation regions

One can easily construct parameters so that the represented function is identically zero. However,
these are very special parameters. Moreover, it can be shown that the number of linear regions of

a maxout network is a lower semi-continuous function of the parameters, in the sense that suffi-
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ciently small generic perturbations of the parameters do not decrease the number of linear regions
(Montufar et al), 2022, Proposition 3.2). Hence, the question arises: What is the smallest number of
linear regions that will occur with positive probability over the parameter space (i.e. for all param-
eters except for a null set). For example, in the case of shallow ReLU networks, it is known that the
number of regions for generic parameters is equal to the maximum. For maxout networks we saw in
Theorem f.7 that several numbers of linear regions can happen with positive probability. We prove

the following lower bound on the number of regions for maxout networks with generic parameters.

Theorem 3.8 (Generic lower bound on the number of linear regions). Consider a rank-K maxout
network, K > 2, with ng inputs, n1 units in the first layer, and any number of additional nonzero width
layers. Then, for almost every choice of the parameters, the number of linear regions is at least Z?io (731)

and the number of bounded linear regions is at least (nilg 1).

First we observe that for generic parameters, the number of linear regions of the function rep-
resented by a network is bounded below by the number of linear regions of the network restricted
to the first layer. This is not trivial, since the deeper layers could in principle map the values from
the first layer to a constant value, resulting in a function with a single linear region. However, for

maxout networks this only happens for a null set of parameters.

Proposition 3.23. The number of activation regions of a maxout network is at least as large as the number
of regions of the first layer. Moreover, for generic parameters the number of linear regions is equal to the

number of activation regions.

Proof. The number of regions never reduces as we pass through the network. The region is either
kept as it is or split into parts by a neuron. The fact that for generic parameters activation regions

correspond to linear regions is Lemma .4. 0

In order to lower bound the number of regions of a single layer, we use the correspondence be-
tween linear regions and the upper vertices of the corresponding lifted Newton polytope, Proposi-
tion .2d. We first observe that the Newton polytope of a shallow maxout units is the Minkowski
sum of the Newton polytopes of the individual units. Recall that the Minkowski sum of two sets A
and Bistheset A+ B={a+b:a € A,b € B}.

Proposition 3.24. Consider a layer of maxout units, f : R™ — R™; f;(x) = max{wj, &+ bjr: r =
L,...,k}. Let f(x) = Y%, fi(x). Then the lifted Newton polytope of f is the Minkowski sum of the
lifted Newton polytopes of f1, ..., fm, Pr = > iy Py,

Proof. This follows from direct calculation. Details can be found in the works of Zhang et al| (2018)

and Montufar et al. (2022). O

Next, a family of polytopes P; = conv{(w;,,b;) € R+ =1, .. , K'} with generic

(Wir,biy),r=1,...,K,i=1,...,n1,isin general orientation. For such a family, the Minkowski

63



Chapter 3. On the expected complexity of maxout networks

sum P = P; + --- + P, has atleast as many vertices as a Minkowski sum of n; line segments in

general orientation:

Proposition 3.25 (Adiprasitg 2o17, Corollary 8.2). The number of vertices of a Minkowski sum of m
polytopes in general orientation is lower bounded by the number of vertices of a sum of m line segments in

general orientations.

From this, we derive a lower bound on the number of upper vertices of a Minkowski sum of

polytopes in general orientations.

Proposition 3.26. The number of upper vertices of a Minkowski sum of ny polytopes in R™ T in general

orientation is at least Z?io (7}1), and the number of strict upper vertices is at least (n;l; 1).

Proof. Consider the sum P = P + --- + P, of polytopes P; = {(w;,,bi,): 7 = 1,...,k},
i = 1,...,nq1. The set of upper vertices consists of 1) strict upper vertices and 2) vertices which
are both upper and lower. The number of strict upper vertices of a Minkowski sum of n; positive
dimensional polytopes in general orientations in R™*! is at least (”gl) (Montifar et all, 2022,
Corollary 3.8).

Now note that the vertices which are upper and lower are precisely the vertices of the Minkowski
sum@ = Q1 + - - - + Qp, of the poltyopes Q; = conv{w;, e R™:r=1,... k},i=1,...,n;.
By Proposition the total number of vertices of a Minkowski sum is at least equal to the number
of vertices of a Minkowski sum of line segments. The latter is the same as the number of regions of
a central hyperplane arrangement in ny dimensions, which is (Zéj) + Z;ﬁgl (7;1)

Hence for any generic Minkowski sum of 11 positive-dimensional polytopes in ng + 1 dimen-

sions, the number of upper vertices is at least

(LG R () -G E () -2 ()

This concludes the proof. O
Now we have all tools we need to prove the theorem.

Proof of Theorem 3.8, By Proposition .23, the number of regions is lower bounded by the number of
regions of the first layer. We now derive a lower bound for the number of regions of a single layer
with ng inputs and n; maxout units. In view of Propositions and .24, we need to lower bound
the number of upper vertices of a generic Minkowksi sum. The bounded regions correspond to the

strict upper vertices. The result follows from Proposition §.26. O

Remark 3.27. The statement of Theorem R.§ does not apply to ReLU networks unless they have
a single layer of ReLUs. Indeed, for a network with 2 layers of ReLUs there exists a positive mea-

sure subset of parameters for which the represented functions have only 1 linear region. To see this,
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consider a ReLU network with pre-activation features of the units in the second layer always be-
ing non-positive. A subset of parameters required to achieve this is defined as a solution to a set of
inequalities (for instance, when the input weights and biases of the second layer are non-positive)
and has a positive measure. For such pre-activation features, the ReLUs in the second layer always

output 0 and there is a single linear region for the network.

3.C Expected number of activation regions of a single maxout unit

We discuss a single maxout unit with n inputs. In this case, the 7-partial activation patterns
correspond to the r-dimensional upper faces of a polytope given as the convex hull of the points
(wg,b) € R"1 k = 1,..., K. The statistics of faces of random polytopes have been studied
in the literature (Hug et al), 2004; Hug and Reitzner, 2oog; Birdny and Vu, 2007). We will use the

following result.

Theorem 3.28 (Hug et al| poo4), Theorem 1.1). Ifv1,. .., vk are sampled iid according to the standard
normal distribution in R, then, the number of s-faces of the convex hull P = conv{vy,..., vk}, de-
noted fs( Pk ), has expected value
d-1
2
)

]Efs(PK) ~ E(Svd)(log K) (3'2)

and the union s-faces of Py, denoted skels( P ), has expected volume

E vol, (skely (P )) ~ (s, d)(log K) ‘", (3.3)

where ¢(s, d) and c(s, d) are constants depending only on s and d.

Based on this, we obtain the following upper bound for the expected number of linear regions

of a maxout unit with iid Gaussian weights and biases.

Proposition 3.29 (Expected number of regions of a large-rank Gaussian maxout unit). Consider a
rank- K maxout unit with ng inputs. If the weights and biases are sampled iid from a standard normal
distribution, then for large K the expected number of non-empty r-partial activation regions satisfies

E[# r-partial activation regions] < ¢(r, ng)(log K) El

where ¢(r, ng) is a constants depending solely on r and n.

Proof of Proposition g.2d. We use the correspondence between r-partial activation regions and the
upper 7-dimensional faces of the lifted Newton polytope (Proposition f.2d). The total number of
s-dimensional faces of a polytope is an upper bound on the number of upper s-dimensional faces.

Now we just apply Theorem .28, O
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We can use the above result to upper bound the expectation value of the number of regions of a
maxout network with iid Gaussian weights and biases. In particular, for a shallow maxout network

we have the following.

Proposition 3.30 (Expected number of linear regions of a large-rank Gaussian maxout layer). Con-
sider network N with ng inputs and a single layer of nq rank- K maxout units. Suppose the weights and
biases are sampled iid from a standard normal distribution. Then, for sufficiently large K, the expected
number of linear regions is bounded as

no

E[# linear regions] < (nl) (¢(np)(log K)% — 1),
- J
7=0

where ¢(ng) is a constant depending solely on n. This upper bound behaves as O(n7° (log K') %”3) inmni
and K.

Proof. By Montufar et al! (2022, Theorem 3.6), the maximum number of regions of a layer with ng

inputs and 7] maxout units of ranks k1, . .., ky, is

max|# linear regions| = Z Z H (ki —1).

J=0 SE([M )i€s

Consider now our network with 17 maxout units of rank K. For a given probability distribution
over the parameter space, denote Pr(k1, . .., ky, ) the probability of the event that the i-th unit has

k; linear regions, 7 = 1, ..., ny. If the parameters of the different units are independent, we have

no

E[#linear regions] < Z Pr(ki, ..., kn, Z Z H (ki —1)

1<k1,....kny <K j= OSE([n_ﬂ)zGS
J

7=0 [n11)i€8
se()
If the weights and biases of each unit are iid normal, Proposition allows us to upper bound the
latter expression by
no

< (”;) (eno)(log K) % — 1)1,

.
)

This concludes the proof. O
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3.D Proofs related to the expected volume

The following is a maxout version of a result obtained by Hanin and Rolnick (20194, Theorem 6) for

the case of networks with single-argument piecewise linear activation functions.

Lemma 3.31 (Upper bound on the expected volume of X/ ;). Consider a rank- K maxout network N

with input dimension ng, output dimension 1, and random weights and biases satisfying:
1. The distribution of all weights has a density with respect to the Lebesgue measure.

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the values

of all weights and other biases.

Then, for any bounded measurable set S C R™ and anyr € {1,...,ng}, the expectation value of

the (ng — r)-dimensional volume of X)s . inside S is upper bounded as

E[voly,—r (X NS)]

<Y (Bl (@ - w) e 467 (" - w) 2+ 67)]]
JEST S

where, for any given r-partial activation sub-pattern J = (J,),cz € S, for any given .J, we denote its
smallest element by jo, we let pyr denote the joint conditional density of the biases of pre-activation features
Jj € J.\ {jo} of the neurons z € Z, given all other network parameters, we let g: R™ — R”; x
(W™ —w") &™) + " = (Wajy — Wag) » Tyz)—1 + bzjo)zezjes\ o) € R, denote J g the
r X ng Jacobian of g, and | Jg(z)| = det ((Jg(z))(Jg(z))") %, and the inner expectation is with

respect to all parameters aside these biases.

Proof of Lemma R.34. The proof follows the arguments of Hanin and RolnicK (20194, Theorem 6). The
main differenceis that maxout units are generically active and the activation regions of maxout units
may involve several pre-activation features and additional inequalities. To obtain the upper bound,
we will discard certain inequalities, and separate one distinguished pre-activation feature jg for
each neuron participating in a sub-pattern, which allows us to relate inputs in the corresponding
activation regions to bias values and apply the co-area formula.

Recall thatan r-partial activation sub-pattern J € S, isalistofpatterns J, C [K] of cardinality
atleast 2 for a collection of participating neurons z € Z,with ) | . >(|J.| —1) = r. Further, for any
given J, we denote jj its smallest element. When discussing a particular sub-pattern, we will write

= | Z| for the number of participating neurons. Finally, recall that H(J,0) = (,.z H(Jz,0).

By Corollary .17, with probability 1 with respect to 6,

volpy—r (X (0 Z voly,—r(H(J,0)).
JeS,
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Fix J € S,. In the following, we prove that

E[vol,,—r(H(J,0) N S)]

< /E (oo (W™ — w') - @™ +b™) [ J((w™ —w") - 2™ +b™)|]] de.
S

We first note that

voly,—r(H(J,0) N S) = / dvoly,—r(x). (3-4)
H(J.0)NS

Foreachz € Zand J, wecanpickanelementjj € J, and express H(.J,, 0)intermsof (|.J,|—1)

equations and (K — |J|) inequalities (not necessarily linear),

H(JZ, 9) = {J} c R™0 ‘ Wz jo * Ti(z)—1 + szO = Wzj " Ty(z)-1 + bz’j, Vjed, \ {jo};

, (3-5)
Wz,jo * Ll(z)—1 + bz,jo > Wy Li(z)-1 + bz,i, Vi € [K] \ Jz}

Here, 2(,)_1 are the activation values of the units in the layer preceding unit z, depending on the
input z. Since ) __(|J;| — 1) = r, the set H(J, #) is defined by r equations (in addition to inequal-
ities). We will denote with b” € IR" the vector of biases b, ; that are involved in these 7 equations,
with subscripts (z, j) with j € J, \ {jo}and z € Z.

We take the expectation of (3.4) with respect to the conditional distribution of b" given the val-
ues of all the other network parameters. We have assumed that this has a density. Denoting the

conditional density of b” by ppr, this is given by
/ dvoly,—r(x)ppr(b")db". (3.6)
R"™ H(J,0)NS

The equations in (3.9) imply that baj = (Wajy — Wej) - Tyz)—1 + bz j, forany x € H(J,0). We

write all these equations concisely as b” = (w™ — w") - ™, + b"™. Then (8.6) becomes
/ / por (W™ —w") - x™ +b™) dvoly,_,(x)db". (3-7)
R H(J,0)NS

We will upper bound the volume of #(.J, #) by the volume of the corresponding set without the

inequalities,

H/(J,H) = ﬂ {(L‘ c R™ ‘ Wz jo * Ti(z)—1 + bzyjo = Wzj ° TY(z)—1 + bzﬂ', Vied, \ {]0}} .
zEZ
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Since H(J,0) C H'(J,H), we can upper bound (§.7) by

/ por (W™ —w") - &™ + ™) dvoly,_,(x)db". (3-8)
R™ H'(J,0)NS

Now we will use the co-area formula to express (@) as an integral over S alone. Recall that the

co-area formula says thatif ) € L!'(R") and g : R® — R” with r < n is Lipschitz, then
/ / Y(z)dvol,_r(z)dt = Y(z)||Jg(x)||dvol,(x),
T gfl(t) Rn

where J g is the r X n Jacobian of g and ||Jg(z)|| = det((Jg(a:))(Jg(x))T)%.

In our case 7 = 7, n = Ny, which satisfy 7 < ng. Further, b” € R" plays therole of t € R", and
R™ — R";z +— ppr ((w™ —w") - ™ + b™) plays the role of 9. Since (w™ — w") - ™ + b is
continuous and S is bounded, assuming py- is continuous, thisisin L!(S). Finally, we set g: S —
R"z+— ((w™ —w") - ™ + b™), which is Lipschitz.

Hence (3.§) can be expressed as

/be((wm —w") -2l + ") [[J(w™ —w") - 28y + ™) da.
S

Taking expectation with respect to all other weights and biases, and interchanging the integral

over S with the expectation (according to Fubini’s theorem, since the integral is non-negative),

/ E [ppr (w™ — w") - @™ + b™) [|T((w™ —w") - 2™ + b™)][] de.
S

Summing over all 7-partial activation sub-patterns J € S, gives the desired result. O
Based on the preceding Lemma k.31, now we derive a more explicit upper bound expressed in
terms of properties of the probability distribution of the network parameters.

Theorem 3.10 (Upper bound on the expected volume of the non-linear locus). Consider a bounded
measurable set S C R"™ and the settings of Theorem @ with constants Cgyaq and Clias evaluated over S.
Then, foranyr € {1,...,n0},

E[volyy—r (X N S)] (TK\ (N
. < ; .
voly, () < (2CgraaClias) 2r r

Proof of Theorem.1d. By Lemma g.31, E [vol,,, (X, N S)] is upper bounded by

> [ Elppr((w™ —w') - 2™ +67) [|T((w™ —w') - 2™ +b7)|] d.
JES, g
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Since we have assumed that for any collection of ¢ biases the conditional density given all

weights and the other biases can be upper-bounded with Cf,_, we have ppr ((w™ — w") - ™ +

bm) <O

— “bias*
Asfor the term E[||J ((w™ — w") - ™, + b™)||], note that

ias’

[J(w™ —w") - 2™ +b™)]|
= det (J((w™ —w") - 2™ + b TT(w™ — w") - x™ + b))
= det (Gram(v((wzl,jo - wzl,jd) *L(z1)—1 + bzl,jo)a )
1/2
v((wzmaj() - wZM7j7‘m) : l’l(zm),l + bz'rij))) / ) (39)
where forany vy, ..., v, € R", (Gram(v1,...,v,))i; = (i, vj) is the associated Gram matrix.

Itis known that the Gram determinant can also be expressed in terms of the exterior product of

vectors, meaning that @) can be written as

IV (w2150 — Way 1) - Ty(z)-1 T bz o) N+ AV (Wzp o — wzm:jrm> “TY(zm)-1 T bzl

which is the the r-dimensional volume of the parallelepiped in R™° spanned by 7 elements. There-
fore, for J € S, with participating neurons 2, we can upper bound this expression by (see Gover

and Krikorian, 2010d)

H H Hv((wajo - wzi,j) “Tyz)—1 t bz7j0)||

ZGZjEJz\{jO}

< H H 2max {||V (w2, ) [V (wz, - ‘Tl(Z)—l)H}
2€Z jeJ \{jo}

< 9T 2, " z)— " :

- ze%l,?)e(Jz Ve @) Ul

In the second line we use the triangle inequality. Considering the assumption that we have made

on the gradients, for the expectation we obtain the upper bound (2Cgraq)".
By Lemma f.6, we can upper-bound the number of entries of the sum 3 Jes, with (TQI:) (]7\,7)

Combining everything, we get the final upper bound

A(TEK\ (N
(2Cgradcbias) ( 2 ) < r > VOIno (S)

This concludes the proof. O
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3.E Proofs related to the expected number of regions

Theorem 3.9 (Upper bound on the expected number of partial activation regions). Let N be a fully-
connected feed-forward maxout network with ng inputs and a total of N rank K maxout units. Suppose we

have a probability distribution over the parameters so that:
1. The distribution of all weights has a density with respect to the Lebesgue measure on R*Veights,

2. Every collection of biases has a conditional density with respect to Lebesgue measure given the values

of all other weights and biases.

3. Thereexists Cgraq > 050 that forany t € N and any pre-activation feature (, 1,

sup E[chz,k(x)ut] < C(érad'

z€R™0

4. There exists Cyias > 0 so that for any pre-activation features (1, . . . , (; from any neurons, the con-

ditional density of their biases py, .. p, given all the other weights and biases satisfies

t
sup by, b (01,5 b) < s
b1,...,b:€R

Fixr € {0,...,no}andletT = 25Cgradcbias- Then, there exists 59 < 1/(2CgradChias) such that for all
cubes C' C R™ with side length § > o we have

rK\ (N N—r
[E[# r-partial activation regions of N in C| ( 2r ) ( T )K V= mno

vol(C) - (TIZQ) (’;}iﬁ)
T'no. M

N > ng

Here the expectation is taken with respect to the distribution of weights and biases in N. Of particular interest

is the case r = 0, which corresponds to the number of linear regions.

Proof of Theorem .. The proof follows closely the arguments of Hanin and RolnicK (2019b, Proof
of Theorem 10), whereby we use appropriate supporting results for maxout networks and need to
accommodate the combinatorics depending on K. Fix a network N with rank- K maxout units,
input dimension ng and output dimension 1. Let 0 < 7 < ng. For N < ny, the statement follows
direction from the simple upper bound on the number of distinct r-partial activation patterns given
in Lemma .6,

Consider now the case N > ng. Fix a closed cube C' C R"™ of sidelength § > 0. For any
te{0,...,no}let

C; := t-skeleton of C
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denote the union of ¢-dimensional faces of C'. For example, (| is the set of 2™° vertices of C, C,,—1
is the set of 2n facets of C, and C),, is C'. In general, C}; consists of (T;D) 270~ faces of dimension ¢,

each with t-volume §%. Hence,
vol, (Cy) = (T?) gno—tst, (3.10)
For any choice of 6 let
Vi(0) := Xy (0) N Cy.

By Lemma .33 below, for any ¢ and almost every choice of , the set V; () is a finite set of points.
Foreacht € {0,...,np}, we also define

Cie = {z € R™ | dist(z, Cy) < e},

the e-thickening of Cy. For almost every ), Lemma .34 ensures the existence of an & > 0 such that
for allv € V;(0), the radius-¢ balls B.(v) are contained in C} . and are disjoint. Hence, writing

Wno—t for the (ng — t)-volume of the (ng — t)-dimensional ball with unit radius,

VOan_t(X_/\/,t N Cth) > Z Enoitwno_t = #Vt . Enoitwno_t.
vEVY

Therefore, for all but a measure 0 set of § € R¥P3™S there exists € > 0 so that

VOan,t(X_/\[’t M Ct,s)

— > #V.
gno Wng—t

Thus taking the limite — 0 and taking expectation with respect to the parameter , and apply-
ing Fatou’s lemma to upper bound the result by the expression with exchanged limit and expecta-
tion,

< limE
e—0

E[#V,] <E [lim volny —( X N Ct’g)]

e—0 5n07twn07t

[Volng_t(X/\/’,t NCe) ]

Enoftwno 4

Then,

E[#V] <lim E volny—t(Xnt N Cre) | VOlﬁO(Ct,a)
e—0 volpy (Cie) et
|:V01n0—t(X/\/',t N Ct,s):| im M
VOl”O (Ct,e)

tK\ (N
S(chradcbias)t < 2t) ( " ) VOlt(Ct)-

=IlmE

e50 e—0 g0l 4
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To obtain the last line, the first term is upper bounded using Theorem f.1d, and the second term is

evaluated using

. vol,, (Cye
llm nO( s )
e=0 g0 bwy

= VOlt (Ct) .
Combining this with Lemma .34 and the formula (g.1d) for vol; (Cy), we find

E [#{r-partial activation regions with R(J";8) N C' # 0}]

N0t tK\ (N (ng
< > () KT (2CgaChis) 2ros!
621/(2Cgradcbias) noK o t N no
< . \no no—r § : ) .
> (250gradcb1as) ( 2n0 ) (2K) <T‘> ( ¢ ) < ¢ ) (3 11)

t=r

The last line uses the assumption that § > 1/(2CgadChias) and Lemma k.33, which states that
(%) < (5,) fort <.

In the following we simplify (3.11). Note that (i) < Zf«:o (f,) = 2! < 20, Hence (3.11) can be
upper bounded by

e ()55 (7))

t=r
_ n Tl[)K no—r - o ’ (]2[)
= (46Cgraa Cbias) ™ < 210 ) (2K)™ tzz; < t > (nto) '

Using ng < IV, observe that

(%) N1 (ng —t)! (no—t)! _ N"™ (ng—t)! _N™ (ng—1)!

- < Nt. - . .
(nto) (N —t)!-no! — ng! Nno—t ng! ng! Nno—t
no _ +\no—t no
<N . (TLO t) < N '
~ ng! Nno—t ~ ng!

Also, using Vandermonde’s identity, observe that

no 2

Z <TLO) _ <2n0> < An0
=0 t no

Combing everything, (3.11) is upper bounded by

noK

. no
(16(5Cgrad Oblas) < 2n0

_.Nm™ noK N™
2K)"07" —— = (32K CiraqChias) ™ ——— vol(C).
> ( ) nO! (3 Cg dCb ) ( 2n0 ) (2K)rn0[ Vo (C)
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Setting T = 25CgradcbiaSy we get

(TEN)™(3,)
(2K)’"n0!

vol(C).

This concludes the proof. O

We state and prove lemmas used in the proof of Theorem f.d.

Lemma 3.32. Foranyt < n, (t;t{) < (g{f)

Proof. To see this, note that (t;t{ ) < (g{f) is equivalent to the following:

(Kr)!

2r)(Kr —2r)!
(2n)! (Kn — 2n)!

<
2r)! (Kr—2r)! = (Kr)!
2n—2r (K—2)n—(K-2)r Kn—Kr
II @+ 11 (Kr—2r +j) < (K7 +k).
i=1 j=1 k=1

since [[772(2r + 4) < I[P (Kr + k) and [[S77" (5 — 20 4 ) <
Hfznz_nl_(;r_,_l (Kr + k) the inequality holds. m

Lemma 3.33. For almost every 6, for eacht € {0, ... ,ng}, theset V,(0) = Xnr+(0) N Cy consists of

finitely many points and
ng "
#{r-partial activation regions R(J",0) with R(J",0) N C # 0} < Z <T> K'"7"#V,(0), (3.12)
t=r

where #V;(0) is the number of points in V;(6).

Proof. The proof is similar to the proof of (Hanin and Rolnick, 2o1gb, Lemma 12). The difference
lies in the types of equations that appear in the partial activation regions of maxout networks. The
dimension of V;(#) is 0 with probability 1, because the set C; has dimension ¢ and, by Lemma .16,
with probability 1 the set X'xr; coincides locally with a subspace of codimension . The intersection
of two generic affine spaces of complementary dimension has dimension 0.

Now we prove (3.13). If J” is an r-partial activation pattern and R(.J",60) N C' # {), then the
closurecl R(J", §)NC'is anon-empty polytope. The intersection is bounded because C'is bounded,
and, by Lemma .4, the closure of R(J",0) is a polyhedron. As a non-empty polytope, this set has
at least one vertex. Generically, if a vertex is in an (ng — t)-face of I R(J", #), then itis in a ¢-face

of C. Hence, with probability 1,

RUJI.ONCAD = 3Ite{r...,ng} st dRI,0) NV #0.
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Thus, with probability 1,
ng
#{r-partial activation regions with R(J",0) N C # 0} < Z Ti#Vy,
t=r

where T} is the maximum over allv € V; of the number of r-partial activation regions whose closure
contains v.

To complete the proof, it remains to check that, with probability 1,

T, < (t) K,
T

By the definition of X/, each v € V) is an element of exactly one ¢-partial activation region
defined by t equations. To upper bound the number of r-partial activation regions that contain v,
we upper bound the number of ways in which one can get an r-partial region from this ¢-partial
region. We have (i) options to pick r equations that will remain satisfied. In each case, there are at
most ¢ — r neurons for which we need to specify a pre-activation feature attaining the maximum,

for a total of at most K~ options. This concludes the proof. O

Lemma 3.34. Fixt € {0,...ng}. For almost every choice of 0, there exists ¢ > 0 (depending on 6) so
that the balls B, (v) of radius € centered at v € V; are disjoint and

voly,—¢(Xn e N B:(v)) = €™M M one—t,

where w; is the volume of a unit ball in R,

Proof. The proof is similar to the proof of Hanin and Rolnick (2019b, Lemma 13), whereby we use
Lemma .34 and the results for maxout networks obtained in Section §.A. By Lemma .33, with prob-
ability 1 over 0, each V, is a finite set of points. Hence, we may choose € > 0 sufficiently small so
that the balls B, (v) are disjoint. Moreover, by Lemma .16, in a sufficiently small neighborhood of
v € V4, the set X ¢ coincides with a (ng —t)-dimensional subspace. The (ng —t)-dimensional vol-
ume of this subspace in B.(v) is the volume of (ng — t)-dimensional ball of radius &, which equals

g0ty _t, completing the proof. O
To conclude this section, we compare the results on the numbers of activation regions of maxout

and ReLU networks in Table i.2.

3.F Upper bounding the constants

We briefly discuss the constants Chi,s and Chi,s in the hypothesis of Theorem @ The constant Ch;as

can be evaluated atinitialization using the definition since we know the distribution of biases. Recall

75



Chapter 3. On the expected complexity of maxout networks

Table 3.2: Comparison of the activation region results for maxout and ReLU networks.

RELU NETWORK MAXOUT NETWORK
Generic lower bound on the number 1, Remark Z;‘Lio (njl), Theorem §.8

of linear regions for a deep network

Trivial upper-bound on the number (]X) 2N="(Hanin and (7"2[:) (]X) KN=" Lemmap.6,

of r-partial activation regions Rolnick, 2o1gb, Theorem 10)  see also Proposition
n (TKN)™o (0%

Upper-bound on the expected num- (g,{\;)nlo , T = 25C’gradC’bias, ngi&’

ber of r-partial activation regions, (Hanin and Rolnick, 2o19b, T = 2°CigraqChias)

N > nyg Theorem 10) Theorem .4

Upper bound on the expected (79 —  (2CgradCbias)” (]X), (Hanin (2Cgrad Cias)" kK (]X),

7)-dimensional volume of the non- and Rolnick, po19ga, Theorem

linear locus Corollary 7)

that we defined Ch,s as an upper bound on

1/t
( sup Pby,...,bt (blv v >bt)> )
b1,...,btER

where py,, ., is the conditional distribution of any collection of biases given all the other weights
and biasesin N and ¢ € N. If the biases are sampled independently, independently of the weights,

this equals supcp pp(b). Then, for instance, for a normal distribution with standard deviation

\/C/ny, the constant Ch;,s can be chosen as

[
max .
1€{0,....L.—1} \ 27C

The constant Cg,q Was defined as an upper bound on

1/t
(s BV

Therefore we need to upper-bound E [[| V(. (x)||*]. This expression stands for the ¢-th mo-
ment of the L2 norm of the gradient of a pre-activation feature (; j, in a network, with respect to the
input to the network.

One possible calculation is as follows. We consider J,, = [V N1 (2;6), ..., VN, (2;0)] " the
Jacobian of the output vector with respect to the input, for a given parameter 6 and input x. Note
that the gradient V(, () for a pre-activation feature of a unit in the [-th layer of a network is a
row in the Jacobian matrix of an [-layer network. Therefore, |V, ()| can be upper-bounded by

the spectral norm ||.J;|| of the Jacobian, and the moments of the Jacobian norm can be used as an
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upper-bound on the ¢-th moments of the gradient norm, ¢t > 1.

Proposition 3.35 (Upper bound on the moments of the Jacobian matrix norm). Let N be a fully-
connected feed-forward network with maxout units of rank K and a linear last layer. Let the network have
L layers of widths ny, . .., ny, and ng inputs. Assume that the weights and biases of the units in the l-th
layer are sampled iid from a Gaussian distribution with mean 0 and variance c/n;_1,l = 1,..., Land c

is some constant ¢ € R, ¢ > 0. Then

L—1 ny t/2
—t/2 & K
(|| < ¢/*ny B[, ) [T B @Zm&iz) |

(K)

TLlll

where J,, is the Jacobian as defined above, v € R™;t > 1t € N;m

in a sample of size K of X%z—1 variables. Recall that the largest order statistic is a random variable defined

is the largest order statistic

as the maximum of a random sample and that a sum of squares of n independent Gaussian variables has a

chi-squared distribution x>

Proof. Our first goal will be to upper-bound ||J;|| = supy, = [|Joul|. The Jacobian J, of
N(z): R™ — R™ can be written as a product of matrices W(l), Il =1,...,L depending on the
activation region of the input z. The matrix W consists of rows Wl(l) = Wi(l,gi € R™-1 where
k; = argmanE[K]{WéQ:E(l_l) + bz(l,)c} fori =1,...,n;,and (=Y isthel-th layer’s input. For the

(L)

last layer, which is linear, we have W'~ = W (L), Thus for any given u € R™ we have

W

| Tpul| = [|WE) .

Consider some u(?) with ||u(?)|| = 1 and assume ||W(1) )|| # 0. Note that for fixed u(o) the
probability of w being such that HW Q) || = 01is 0. Multiplying and dividing by || w O

we get
HW O]
w. (0)
A IR rraC W™ u 1
HW U(O)H
L 1 -
—HW L 0| o),
w71
where u(!) = %. Notice, |u(}|| = 1. Repeating this procedure layer-by-layer, we get
_ —(L—1
W EuED D E2 ) 7).
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. 5
Now consider one of the factors, || 7= ||. We have

Cauchy—Schwarz
L lult=D]=1

ny ny

—(1 _ — (1 _ —(l l

Ot =300 < S <Y max (W)
=1 =1 =1

Notice that this upper bound only depends on W ") and is independent of all other weight matrices

and of the input vector.

. . 1) d . .
According to our assumptions, Wi(k) =,/ nlc -, where v is a standard Gaussian random vec-

. l d .. . . .
tor in R™~1. Therefore, ||WZ( k) > = ﬁx%lﬂ has the distribution of a chi-squared random vari-

. l ! .
able scaled by ¢/n;_1. Moreover, since the vectors Wi(l) ey Wi( I){ consist of the same number of
.. . . l l .. l d
separate iid entries, the variables ||VVZ-(1) 12, .., ||WZ([)(H2 are iid. In turn, maxe (k] {HWz(k) ||2} =

c (K) (K)
Moy i where m,

is the largest order statistic in a sample of size K of x2  variables.
152 ni—1

. _ d . . .
Notice that |[IW(Eyu(E-D|2 = - Xz, To see this, recall that if u is a fixed vector and
w is a Gaussian random vector with mean / and covariance matrix 3, then the product v ' w is

Gaussian with mean v ' ;1 and variance u ' Yu. Hence, since VVZ-( ) is a Gaussian vector with mean

. . L _1) . . . .
zero and covariance matrix X = ﬁf s WZ»( )u(L 1) is Gaussian with mean zero and variance
c (L-1)|12 — _c
nL_1||u H nL—l‘

Combining everything, we get

C 1/2 o Ml 1/2 . m 1/2
_ 2 K K
I = sop 1l < (50, ) (G Xm0, ) (Y mil)
flull=1 L-1 L-2 33 0521
L1 L-1 [/ my 1/2
_ L2 —1/2 (K)
=ct/ Xnr Hnl H me—hi
1=0 =1 \i=1

Now using the monotonicity of the expectation, the moments of the right hand side upper-
bound those of the left hand side. Moreover, using the independence of the individual factors, the

expectation factorizes. For the ¢-th moment we get

L—1 L—1 / my t/2
E(| 7)1 < E |2y, | T]n Som
=0 =1 =1
L—-1 ny t/2
=g e TTE | o mi,
=1 =1

O]

Corollary 3.36 (Upper bound on Cyrq). Under the same assumptions as in Proposition B.34, assuming

that c is set according to He initialization, meaning ¢ = 2, or maxout-He initialization (see Table g4 for
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specific values of ¢ for various K), the following expression can be used as the value for Cgraq:

1/t

c 1/2 t 4 l/tL_1 e & (K) v
(no> (nL(nL+t)2 ) H E n—lZmnlihi ,

=1 i=1

(K)

where my,

. . . 2 .
i 1S the largest order statistic in a sample of size K of x;,, | variables.

Proof. The constant Cgr,g Was defined as an upper bound on

(s E[nvcz,k(x)m)l/t.

TER™0

Therefore, using the upper-bound on the moments of the Jacobian norm from Proposition B.34,

an upper-bound on the following expression can be used as a value for Cgraq:

1/t

]_tLil c ny K t/2
—-1/2
Mg (B, T (B (mZm;l_’l,i)

=1 =1

The moments of the chi distribution are

_ el +)/2)

B b =2

Using an upper-bound on a Gamma function ratio (see Jameson|, 2013, Equation 12), this can be

upper-bounded with

TLL(TLL + t)%_l.

(K)

The factor involving my,, ’, can be upper-bounded by considering the explicit expression for the
moments of the largest order statistic of chi-squared variables. The closed form for these moments
is available (see Nadarajah, 2008), but they have complicated form and we will keep the factor in-

(K)

volving my,, , asitis. Then the total upper bound is
1/2 =, ny t/2
¢ L71> H ¢ E : (K)
— t)2 E — .
<n0) (nL (nL + ) = ny & My 1
O

Estimating the moments of the gradient of maxout networks is a challenging topic, as can be
seen from the above discussion, and is worthy of a separate investigation. It might be possible to

obtain tighter upper bounds on it and on Cgyaq, a question that we leave for future work.
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3.G Expected number of regions for networks without bias

Zero bias Small bias Non-zero bias

Figure 3.9: Linear regions of a 3 layer network with 100 units and the maxout rank K = 2. The net-
work was initialized with the maxout-He distribution. Activation regions of a maxout network with
zero biases are convex cones. Small biases are initialized as the biases sampled from the maxout-
He distribution multiplied by 0.1. The majority of linear regions of a network with small biases are
cones, and the ones that are not are small and concentrated around zero.

Zero biases of ReLU networks were discussed in Hanin and RolnicK (2019H) and studied in de-

tail in (2019). There is no distribution on the biases in the zero bias case, meaning that
conditions on the biases from Theorem f.d are not satisfied. We closely follow the proofs in

and Rolnick (2019b) and show that the arguments similar to those regarding the zero bias case in

the ReLU networks also apply to the maxout networks. According to Lemma .37, activation regions
of zero-bias maxout networks are convex cones, see Figure .d for the illustration. In Corollary k.3d,

we come to a conclusion that the number of activation regions in expectation in a network with zero
. no—1 K(no _1)
biases grows as O(no(KN) (2(n0_1) )

Lemma 3.37. Let N be a maxout network with biases set to zero. Then,
(a) N is nonnegative homogeneous: N (cx) = ¢cN (x) for each ¢ > 0.

(b) For every activation region R of N/, and every point z: in R, all points cx: are also in R for ¢ > 0 and

'R is a convex polyhedral cone.

Proof of Lemma .37 Each neuron of the network computes a function of the form 2(x1,. . ) =

maxge(g] {21 Wik - Ti}. Note that for any ¢ > 0:

n n
z(exq,...,cxy) = max { C E Wik - T p = C- max E Wik~ Xy p=C-2(T1,...,%p).
ke[K] =1 ke[K] | “ 1

Therefore, each neuronis equivariantunder multiplication by anonnegative constant ¢, and thus the

overall network as well, proving [a). If ¢ > 0, the activation patterns for x and cz are also identical,
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since for any inequality in the activation region definition we have

n n n n
-

E Wi j * CTj > E Wi j' + CT; i E Wi j * T > E Wi 5 Ty 5] S [K]

=1 =1 i=1 =1

This implies that x and cz lie in the same activation region, and that R is a convex polyhedral

cone, see e.g. Chandru and Hookeq (2011). This proves [(b). O

Proposition 3.38 (Networks without biases do not have more regions). Suppose that N is a maxout
network with biases and conditions from Theorem B.d are satisfied. Let N be the same network with all

biases set to 0. Then, the total number of activation regions (in all the input space) for N is no more than

that for N.

Proof of Proposition .38, We define an injective mapping from activation regions of \/j to regions of
N. For each region R of N, pick a point g € R. By Lemma @, cxrr € Rforeachc > 0.
Let V1 /. be the network obtained from N by dividing all biases by c, and observe that N'(czr) =
Ny /c<3772), with the same activation pattern between the two networks.

By picking c sufficiently large, N} /c becomes arbitrarily close to No. Therefore, for some suffi-
ciently large ¢, Ny(cxr ) and NV (cxr ) have the same pattern of activations. Regions of N in which
cxR lies are distinct for all distinct R. Thus, the number of regions of \ is at least as large as the

number of regions of Nj. O
We obtain following corollary of Theorem f.d for the zero-bias case.

Corollary 3.39 (Expected number of activation regions of zero-bias networks). Suppose that Ny is a
fully-connected feed-forward maxout network with zero biases, ng inputs, a total of N rank K maxout units.
Also, suppose that all conditions from Theorem R.d, except for the conditions on the biases, are satisfied. Then

there exists a constant T" depending on Clrad so that

KN, N <ng

[E[#activation regions of Nj| < (1K Nyno—1 (K (no—D)
2(ng—1)

(no—1)! )

2710 N > no

The expectation is taken with respect to the distribution of weights in Nj.

Proof of Corollary g.3d. Based on Proposition .38 we can use the same upper bound as for the net-
works with biases, thus for the case N < ny, the expectation is upper bounded with K.

Now consider the case N > ng. We will add biases to Ay in such a way that the bias conditions
of Theorem f.d are satisfied with some C!.,,- Denote the resulting network with V. Then, by Propo-
sition .38, \V has a region corresponding to each region of . All the corresponding regions in

are unbounded because according to Proposition .38 for any 2% from a region of \j there exists
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a constant ¢ > 0 so that cz belongs to a region in V. Since all regions in Ny are unbounded, all
corresponding regions in V' are unbounded under such a mapping.

Therefore, to obtain the result, it is enough to upper-bound the number of unbounded activation
regions of AV Similarly to the proof of Theorem .g, consider a hypercube with a side length & > dy,
large enough to interest all the unbounded regions. Then the total number of unbounded activation
regions of \V is upper bounded by the sum of the numbers of activation regions intersecting each of

the hypercube 2n facets, each of dimension (19 — 1). By Theorem R.d, the expected number of acti-

KN)nO_l (IZ((S;LO():ll)))/(nO - 1)'

with 7" and combining everything we get the desired result. O

vation regions of V in R0 ! is upper bounded with (§2°C, grad O},

ias
/
bias

Denoting §2° Cerad

3.H Proofs related to the decision boundary

3.H.1 Simple upper bound on the number of pieces of the decision boundary

A network used for multi-class classification into M € N, M > 2 classes can be seen as
a network with a rank M maxout unit on top. Therefore, to discuss the decision boundary,
we consider r-partial activation regions, » > 1, with at least one equation in the last unit.
With Jlp, we denote the r-partial activation patterns corresponding to such regions and with

Xo,r = Ur epy,.. R(Jpp; 0) their union. All decision boundary is then written as Xp .
’ DB )T

Lemma 3.40 (Simple upper bound on the number of r-partial activation patterns of the de-
cision boundary). Let » € N_. The number of r-partial activation patterns in the decision

boundary of a network with a total of N rank-K maxout units is upper bounded by |Ppp,| <
Zmin{Mfl,r} (M ) (K(T—i)) ( N

=1 i+1/\ 2(r—i) / \r—i

bounded by |Spg,r| < ST () (I;(gjii))) (7o)

)K N=r+i The number of r-partial activation sub-patterns is upper

Proof of LemmaR.4d. Activation patterns for the decision boundary regions should have at least one
equality in the upper unit. At the same time, the maximum possible number of equations in the last
unitis min{ M — 1, r}. To get all suitable activation patterns we need to sum over all these options.

Now consider a fixed number of equations i € {1,...,min{M — 1,7}}. The number of ways
l]_}_/fl) and the number of options for the all other units in the network is given by
Lemma R.6 for 7 — i. Combining everything, we get the claimed statement. O

to choose them is (

3.H.2 Lower bound on the maximum number of pieces of the decision boundary

The lower bound in the second item of Theorem is based on a construction of parameters for
which the network maps an n-cube in the input space to an n-cube in the output space in many-
to-one fashion. This means that any feature implemented over the last layer will replicate multiple
times over the input layer. We infer the following lower bound on the maximum number of pieces

of the decision boundary of a maxout network.
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Proposition 3.41 (Lower bound on the maximum number of pieces of the decision boundary). Con-
sider a network N" with ng inputs and L layersofny, . . . , ny, rank- K maxout units followed by an M -class
classifier. Supposen < nq, “* even, and e; = min{no, ..., nj_1}. Denote by N (M, n) the maximum
number of boundary pieces implemented by an M -class classifier over an n-cube. Then the maximum num-
ber of linear pieces of the decision boundary of N is lower bounded by N (M, n) Hle (CHK —=1)+1)™
Ifn>Morn>4, N(M,n) = (]\2/[)

The asymptotic order of this bound is (M2 HlL:1 (niK)™0).

Proof. We use the construction of parameters from Montufar et al| (2022, Proposition 3.11) refining
a previous construction for ReLU networks (Montufar et al), 2o14) to have the network represent a
many-to-one map. There are [[1-; (5(K —1)+1)™ distinctlinear regions whose image in the out-
put space of the last layer contains an n-cube. The linear pieces of the decision boundary of an M -
class classifier over an n-cube at the L-th layer will have a corresponding multiplicity over the input
space. An M -class classifier is implemented as RM — [M];y = (y1,...,ynm) — argmax,.c ] Yr-
This has (]\24) boundaries, one between any two classes. If n > M, then the image of the preced-
ing layers intersects all of these boundaries. More generally, the number of boundary pieces of an
M -class classifier over n-dimensional space can be seen to correspond to the number of edges of

a polytope with M vertices in n-dimensional space. The trivial upper bound N (M, n) < (]\24) is

attained if 1 < [%]. This follows form the celebrated Upper Bound Theorem for the maximum
number of faces of convex polytopes (McMullen, 197d). 0

3.H.3 Upper bound on the expected volume of the decision boundary

Theorem 3.12 (Upper bound on the volume of the (ny — r)-skeleton of the decision boundary).

Consider a bounded measurable set S C R™. Consider the notation and assumptions of Theorem E

whereby the constants Cgraq and Ciqs are over S. Then, foranyr € {1,...,ng} we have
min{M—1,r} .
E[vol,y—r(Xppr NS)] M K(r—1) N
. < (2C, Ta G ias " . : i
voly, (S) < (2CgraaChias) ; i+1)\2(r—1) J\r—i

Proof of Theorem .13, Using Lemma k.34, but considering only 7-partial activation patterns that be-
long to the decision boundary, volume of the (ng — 7)-skeleton of the decision boundary can be

upper-bounded with

3 [l —w) o2+ 07) (w0 ) a4 6]
I S

Upper-bounding the integral as in Theorem f.1d, but using Lemma .4d to count the number of en-
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tries in the sum, we get the final upper-bound

min{M—1,r}

(2CgradChias)” Y (T]f Z) ([2{((:—_;))> (Zi‘f 1) voln (S).

i=1

3.H.4 Upper bound on the expected number of pieces of the decision boundary

Lemma 3.42 (Upper bound on the expected number of r-partial activation regions of the decision
boundary). Let N be a fully-connected feed-forward maxout network, with ng inputs, a total of N rank K
maxout units, and M linear output units used for multi-classification. Fixr € {1,...,ng}. Then, under
the assumptions of Theorem B.d, there exists 5y < 1 /(2CradChias) such that for all cubes C C R™ with
side length § > 0y,

min{M—1,r} /+ M K(r—i) N N—r+i
S 2i=1 (1) Goir—iy) (1) K » N<mno
E [# T’-par.tl.al activation regions in }
the decision boundary of A/in C (24 Cigrad Chias N) 0 (2K )"0~
vol(C) o . {Mno!1 Lk | [ (gt
min —1L,ng no—t j=1{"0—
X Zi:l (z’+1) (2(n0—i)) H;:1(N—1+j) » N Zmno

Here the expectation is taken with respect to the distribution of weights and biases in /.

Proof of LemmaR.43. Result for the case N < ny arises from Lemma f.4d. Consider N > ng. The
proof closely follows the proof of Theorem g.1d, and we only highlight the differences. Based on

Lemma ,

min{ M —1,¢} .
N K(t—1) M
E [#V;] < (2CgradChias)’ , 1(Cy).
[Vt]_( grad“~b ) ; <t—i><2(t—i)><z+1>VOt( t)
Therefore, the upper bound on the expected number of r-partial activation regions in the deci-
sion boundary is
no min{M—1,t} i
t _ N K(t — Z) M no _
KtTQCr Ci t 2n0 t5t
> (o) et 32 (7)) () (T)
min{M—1,n0} . no
_ M K(ny —1) N ng
< (46CgraqChias) " (2K )0 . . .
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no) as (n0)2 (t]Xz)

Re-writing () ("™ L7 (m)

we can upper-bound it with

4m0 H}zl(t —j+1) Nmo < 4mo szl(nO —j+1) Nno

1= (N =t + j) no! [y (N =7 +j) no!

The final upper bound is then

min{M—1,n0}

(25C gradChias K N ) M\ (K(no— i)\ [Tj=1(no—j +1)
S 5 () e )T

i=1
Dividing this expression by vol(C') we get the desired result. O

The next theorem follows immediately from Lemma ifrissetto 1.

Theorem 3.11 (Upper bound on the expected number of linear pieces of the decision boundary). Let
N be a fully-connected feedforward maxout network, with ng inputs, a total of N rank- K maxout units,
and M linear output units used for multi-class classification. Under the assumptions of Theorem R.d, there
exists 09 < 1/(2CgradChias) such that for all cubes C' C R™ with side length 6 > 0o,

# linear pieces in the M N <
E [decision boundary of ' in C] ( 2 )K , N =mno
VOI(C) o (24Cgradcbias)n0 (2KN)n0—1 M K(n()—l)
(no=1)! (2)(2@071))7 N 2 ng

Here the expectation is taken with respect to the distribution of weights and biases in /.

3.H.5 Lower bound on the expected distance to the decision boundary

Now, using an approach similar to Hanin and Rolnick (20194, Corollary 5), who provided a lower
bound on the expected distance to the boundary of linear regions, we discuss a lower bound on the

distance to the decision boundary. We will use the following result from that work.

Lemma 3.43 (Hanin and Rolnick 20194, Lemma 12). Fix a positive integer n > 1, and let ) C R"
be a compact continuous piecewise linear submanifold with finitely many pieces. Define Qo = () and let
Q)+ be the union of the interiors of all k-dimensional pieces of Q) \ (Qo U - - - U Q¢—1). Denote by T..(X)
the -tubular neighborhood of any X C R™. We have vol,(T-(Q)) < Y7 wn—e™ * voli(Qy),where
wq = volume of ball of radius 1 in RY.

We will prove the following.

Corollary 3.13 (Distance to the decision boundary). Suppose N is as in Theorem @ For any compact
set S C R let x be a uniform point in S. There exists ¢ > ( independent of S so that

C
> —
2C1gradc'bias]\4m+ m

[E[distance(z, Xpg)]
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wherem := min{M — 1,no}.

Proof of Corollary g.13. Letx € K be uniformly chosen. Then, foranye > 0, using Markov’s inequal-
ity and Lemma f.43, we have

E[distance(z, Xpp)] > e P(distance(z, Xpp) > ¢) = £(1 — P(distance(x, Xpp) < €))

= ¢ (1 — E [vol, (Te(Xpp)]) > (1—ano "' [vol,,_+(XpB)] >
t=1

The upper bound from Theorem can be upper bounded further with

min{M—1,¢} .
M\ (K({t—i\[ N
E[VOIno—t(XDB,t N S)] §(2Cgradcbias)t ; (Z I 1) < 2(t B ’L) ) (t B Z> VOan(S)

(2Cgrad0blas) ( KQN)t 1Mm +1m VOan(S)

where m* := min{M — 1,t}. Then the expectation of the distance can be lower bounded with

no
) (1 B Z(2Cgradcbiasg)t(4€K2N)tle*Jrlm*) 2 € (1 - 2Cgradcbiast+1m5) )
t=1

where m := min{M — 1,no}. Taking ¢ to be a small constant ¢ times 1/(2CgradCbiast+1m)
completes the proof. 0

Remark 3.44 (Decision boundary of ReLU networks). All proofs consider the indecision locus of
the last unit on top of the network and reuse results on the volume of the boundary and the number
of activation regions. If one sets K to 2, these results differ only in 27" from those for the ReLU
networks. Therefore, the decision boundary analysis should also apply to the ReLU networks if one

sets K to 2 with a difference only in the constant.

3. Counting algorithms

3.1.1  Approximate counting of the activation regions

First, we describe an approximate method for counting linear regions that is useful for quickly esti-
mating the number of linear regions or plotting them.

We generate a grid of inputs in an ng-dimensional cube, compute the gradients with respect to
the input, which is simply a product of weights on the path that corresponds to a given input, and
then sum the gradient values for each input dimension of one input. Then, we compute the number

of unique sums and use it as the number of linear regions.
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The method is not exact because it works by computing network gradients on a grid, so it is
possible to miss a small region. Also, it does not distinguish between regions with the same gradient
value, which is one more reason it might miss some linear regions and why it counts linear regions,
not activation regions. However, from what we have seen, if the grid has many points, the difference

between the exact and approximate method is not that big.

3.1.2 Exact counting of the activation regions

The algorithm starts with a cube in which we want to count the activation regions defined with a
set of linear inequalities in R™. We go through the network layer by layer, unit by unit, and for
each unit, we determine if its pre-activation features attain a maximum on the regions obtained
so far by checking the feasibility of the corresponding linear inequalities systems. For this, we
use linear programming. More specifically, an interior-point method implementation from
scipy.optimize.linprog. The use of linear programming is justified since, according to Lemma
@, the activation regions are convex.

The input to the simplex method becomes the combined system of inequalities for the region
and the pre-activation feature. We set the objective to zero, meaning that any z can satisfy it. One
has to use non-strict inequalities in linear programming methods, implying the boundary of activa-
tion regions is also included. We also add a small ¢ = 1e—6 to avoid zero solutions in a zero bias

case. The inequalities for a pre-activation feature of some neuron z have the form
{z € R™ [z jo (2;0) + bz jo > a2i(250) + bz +e, Vi € [K]\[Jo]}-

As aresult, we get a new list of activation regions and pass it to the next unit.

To correctly estimate inequalities corresponding to a pre-activation feature on a specific region,
one has to keep track of the function computed on this region, which has the form: wf]l) . (wL(IO) .
T+ bgo)) +--+ bf}), where J is an activation pattern of the region.

The pseudocode for the algorithm is in Algorithm R.1, and the pseudocode for a check for one

pre-activation feature is in Algorithm .3,

3.1.3 Exact counting of linear pieces in the decision boundary

We define an algorithm for exactly counting linear pieces in the decision boundary based on the al-
gorithm from Section .3, Consider a classification problem with M classes, and to describe the
decision boundary, add a maxout unit of rank M on top of the network. To count the number of
linear pieces in the decision boundary, for each pair of classes, go through all the activation regions
of the network. Construct a linear program for which the set of inequalities is given by a union of
the region inequalities and inequalities which determine if the given classes attain maximum. Also,

add the equality between these two classes. If the problem is feasible, there is a piece in the deci-
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Algorithm 3.1 Exactly Count the Number of Activation Regions in a Maxout Network

t function CountActivationRegions
2 activation_regions =[starting_cube]
for layerin{l,..., L} do

3

4 forunitinlayer do

5 new_activation_regions =[]

6: forregioninactivation_regionsdo

7 for featureinunit do

8 > See Algorithm

9 if NewRegionCheck(unit.features, feature, region) then
10: new_activation_regions.append(new_region)
11 activation_regions =new_activation_regions

12: forregioninactivation_regions do

13: region.function=region.next_layer_function
14: region.next_layer_function =]

15 return length(activation_regions)

sion boundary. At the end of this process, one gets the total number of linear pieces in the decision

boundary.

3.1.4 Algorithm discussion

There are two useful modifications to the method. First, to count the number of regions in a ReLU
network instead of systems of (K — 1) linear inequalities, one can use inequalities of the form w -
z+b>0andw-z+b<0.

Second, to compute the number of activation regions in a slice, one can define a parametrization
of the input space. We consider as the slice of a cube C the 2-space through three points x1, 2, 23 €
R™, meaning the slice has the form V' = {z = v +v1y1 +v2y2 € R™: (y1,92) € R2NC}, where
vo = (x1+z2+2x3)/3 € R™,and vy, vy € R™ are an orthogonal basis of span{zy —x1, x3 — 21 },
and vy, vg are orthonormal. We can evaluate the network function over such a slice by augmenting
the network by a linear layer ¢: R? — R™ with weights v1, v and biases 1. We used images from
3 different classes as the points that define the slice.

We usually performed the computation in a 2D slice, which is reasonably fast because the num-
ber of regions is not large if the input dimension is not high, as suggested by Theorem f.d. Addition-
ally, note that the check for a given unit is embarrassingly parallel, meaning the computation can be
accelerated. To demonstrate that the computation can be carried out in a reasonable time, we also

analyze the algorithm’s space-time complexity.

Space-time complexity of the algorithm

To start, we estimate complexities for some number of activation regions R. Firstly, consider the
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Algorithm 3.2 Auxiliary Function That Checks if a Pre-Activation Feature Creates a New Region

1 function NewRegionCheck(unit_features, feature, region)

N

objective =zeros

3: inequalites =region.inequalities

4 unit_features.weights =unit_features.weights X region.weights

5 unit_features.biases=unit_features.weights X region.biases

6: +unit_features.biases
7 for another_featureinunit_features \ feature do

8: inequalities.append(another_feature.weights - feature.weights X &
9 < feature.bias - another_feature.bias)
100 if LinearProgramming.Solve(objective, inequalities) then

11 next_layer_function=region.next_layer_function

12: + [feature.weights, feature.bias]

13: return Region(inequalites, region.function,next_layer_function)
14: return None

space complexity. Since we store all activation regions, the space requirement grows as R multiplied
by an activation region size. We store a region as a constant size function computed on it and as
a system of linear inequalities. The maximum number of inequalities is attained when each of N
neurons adds a new system of inequalities to the region, while K — 1 inequalities determine that
one pre-activation feature attains a maximum. Therefore, the space complexity of the algorithm is
O(RKN).

Now consider the time complexity. Since we traverse the network unit by unit, and for each pre-
activation feature of aunitand each available activation region, we solve alinear programming prob-
lem, the time complexity is O of RK N times the time complexity of a linear programming method.
We have used an interior point method that has a polynomial-time complexity of O(%L), see
Anstreicher (1999), where n is the dimension of the variables, which is the dimension of the net-
work input ng, and L is the number of bits used to represent the method input. The input is the set

of inequalities, and as we have just discussed, its size is O(K N). Combining everything and using

O(n3L) instead of O( 1:;71 L) for simplicity, we get that the time complexity of the whole algorithm
is O(RK2N?n3).

To get complexities for the average case, assume N > ng. Then, based on Theorem f.d, R grows
as O((K3N)™). Therefore, the space complexity is O(K N(K3N)™) and the time complexity is
O(K?N?n3(K3N)™). Both space and time complexities grow exponentially with the input di-

mension but polynomially with the number of neurons and a maxout unit’s rank.
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3.J Parameter initialization

3.J.1 Heinitialization

We briefly recall the parameter initialization procedure for ReLU networks which is commonly re-
ferred to as “He initialization” (He et all, o15). This follows the motivation of the work by Xavier and
co-authors (Glorot and Bengio, 2010). To train deep networks, one would like to avoid vanishing or
exploding gradients. The approach formulates a sufficient condition for the norms of the activations

across layers to not blow up or vanish. For ReLU networks, this leads to sampling the weights from
a distribution with standard deviation 1/2/n;.

3.J.2 He-like initialization for maxout (Maxout-He)

We follow the derivation from Glorot and Bengio (2010) and He et al/ (2015) but for the case of max-
out units. We note that a He-like initialization for maxouts was considered by Sun et al! (2018) but
only for K = 2. We focus on the forward pass and consider fully-connected layers. The idea is to
investigate the variance of the responses in each layer. We use the following notations. For a given
layer [ with d units and n; inputs, a (pre-activation) response is y; = W;x; 4+ b;, where x; € R™
is an input vector to the layer, W; & RI*™ is a matrix, b; € R% is a vector of biases. We have
x; = ¢(yi—1), where ¢ is the activation function.

We assume the elements in W} are independent and identically distributed (iid). We assume
thatthe elementsin x; are alsoiid. We assume that x; and W areindependent of each other. Denote
Y1, wy, and x; the random variables of each element in y;, W}, and x; respectively. In the following

we assume that biases are zero. Then we have:
Varly;| = nyVar|w; - 2;].

If we assume further that w; has zero mean, then the variance of the product of independent vari-

ables gives us:
Var[y,] = nyVar[w|E[z7]. (3-13)

We need to estimate E[z7]. For ReLU, E[z7] = 1var[y,_1]. For maxout we get a different
result. Let K be the rank of a maxout unit. Then x; = ¢(y;—1) = maxke[K]{yl,l’k}. The
Yi—11,- - - Yi—1,K are independent and have the same distribution. We denote f(t) and F(t) the
pdf and cdf of this distribution. The cdf for 2; = max;¢ (k] {y1—1 1} is, dropping the subscript l — 1
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of y;_1 . for simplicity of notation,

r(ye <t) = (F(t)".

H:jw

Pr | max <t|)=Pr(y,..., <t)
(k [K]{yk} > (y1 YK

In turn, the expectation of the square is

d
E | max t2— [ dt K / t2(F t)dt.
o] = [ 24 o) )

Now we can apply this formula to discuss the cases of a uniform distribution on an interval and
anormal distribution. If we assume that w;_; has a symmetric distribution around zero, then y;_1

has zero mean and has a symmetric distribution around zero.

Uniform Distribution Assuming y;_ has a uniform distribution on the interval [—a, a], we get

Var[y,_1] = a?/3,and

2
K =2:E[zf] = 3 = Varlyi-1],
2 2
K=3:E[z2 = % = Zvarfyi1)
Ta® 7
K =4:E[zf] = 1 gVaf[yl—l],
11a*> 11
K =5:E[zf] = = —Varly,_
) = 3 = vy )
More generally, E[z7] = 4‘12(15-2 KLH + K

Normal Distribution Assuming y;_; has a normal distribution A/(0, o2), the closed form solu-

tion is available for up to K = 4. We have:

K =2:E[z}] = Var[y,_1],
V3427

K =3:E[27] = 5 Var[y;—1],
\/g + 7
K =4:E[2}] = - Var[y;—1],

K =5 : E[z?] ~ 1.80002Var|y;_1].
Inserting the expressions for E[z?] into (§.19),

Var(y;| = nyVar[w]cVar(y,_1],

o1
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Normal ReLU normal Maxout K=2 normal Maxout K=5 normal
[
Var[y]:0.99927 E[x?]:0.50526 E[x?]:1.0077 E[x?]:1.7902
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Figure 3.10: Shown are normal (top) and uniform (bottom) input distributions, as well as the corre-
sponding response distributions for ReLU, maxout of rank K = 2, and maxout of rank ' = 5. The
expectation of the square response for maxouts of rank K > 2 depends not only on the variance but
also on the particular shape of the input distribution.

where c depends on the distribution and on K. Putting the results together for all layers,

L

Var[yr] = Var[y;] H enyVar|wy].
1=2

A sufficient condition for this product not to increase or decrease exponentially in L is that, for each
layer, cn;Var[w;| = 1. This is achieved by setting the standard deviation (std) of w; as /1/cny.

For K = 2 thisis y/1/n; for both uniform and normal distribution. For a uniform distribution, we
1
7 .
(i~ )
We notice that for ReLU, the particular shape of the distribution of the (pre-activation) response

obtain the condition Var[w;] =

y1—1 does not impact the expected square of the activation z;. Indeed, as soon as wj is assumed to
be symmetric around zero, one obtains E[z7] = 1var[y,_1]. In contrast, for maxout units of rank
K > 2, the particular shape of the distribution of y;_; does affect the value of IE[a:lQ] This is why we
obtain different conditions on the standard deviation of the weight distributions depending on the
assumed response distribution. The situation isillustrated in Figure g.1d. Among the possible distri-
butions that one might assume for g;_1, a normal distribution appears most natural. Therefore, we
take the standard deviations obtained under this assumption as the ones defining the maxout-He

initialization procedure. The values of the std of w; for K up to 5 for normal distributions are shown

in Table ..
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3.J.3 Sphereinitialization

If we initialize the pre-activation features of a maxout unit independently, then we expect the num-

ber of regions of the unit will be significantly smaller than K, as discussed in Section §.d. In view

of Proposition §.2d, the number of regions of a maxout unit with weights wy, ..., wx € R” and
biases by, ...,bx € Risequal to the number of upper vertices of the polytope conv{(w,, b.): r €

[K]}. Hence one way to have each rank- K maxout unit have K linear regions over its input at ini-
tialization is to initialize the pre-activation feature parameters as points in the upper half-sphere
{(w,b) € R*": ||(w,b)|| = 1,b > 0}. This can be done as follows. For each pre-activation
featurei =1,..., K:

1. Sample (w;, b;) from a Gaussian on R" 1,
2. Normalize (w;, b;) /|| (w;, b;)||.
3. Replace b; with |b;|.

If desired, subtract a constant ¢ from each of the biases by, . .., bg. For instance, one may choose
c so that the mean output of the maxout unit is approximately 0 for inputs from a Gaussian distri-
bution. We have used ¢ = 1/4/Kn; in our implementation, and Gaussian had zero mean and unit

covariance.

3.J-4 Many regions initialization

We can initialize the parameters of a maxout layer so that the layer has the largest possible num-
ber of linear regions over its input space. A description of parameter choices maximizing the num-
ber of regions for a layer of maxout units has been given by Montufar et al| (2022, Proposition 3.4).
The number of regions of a layer of maxout units corresponds to the number of upper vertices of
a Minkowski sum of polytopes. A construction maximizing the number of vertices of Minkowski
sums was presented earlier by Weibel (2012). The procedure is as follows. Let the layer have input

dimension n. Foreachunitj = 1,...,m:
1. Sample a vector v; € R" from a distribution which has a density.

2. Foreach pre-activationfeaturei = 1, ..., K setthe weights and biasasw;; = v; cos(mi/K)
and b;; = sin(mi/K).

This construction ensures that each unit has K linear regions separated by K — 1 parallel hyper-
planes, and the hyperplanes of different units are in general position. Then the number of regions
of the layer is the one indicated in the first item of Theorem f.21.

If desired, one can add some noise to each of the above parameters (e.g. standard normal times

a small constant) in order to have a parameter distribution which has a density. If desired, one can
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also normalize the initialization by subtracting an appropriate constant (e.g. to achieve a zero mean
activation) and dividing by an appropriate standard deviation (e.g. to achieve that the activations
have a unit mean norm). We were sampling v; from a Gaussian distribution with mean zero and std

chosen according to maxout-He.

3.J.5 Steinwart-like initialization for maxout

Steinwart (2019) investigated initialization in ReLU networks. He suggested that having the non-
linear locus of different units evenly spaced over the input space at initialization could lead to faster
convergence of training, which he also supported with experiments on the datasets from the UCI
repository. We can formulate a version of this general idea for the case of maxout networks as fol-

lows.

1. Assume we have some generic initialization procedure for individual units, which gives
us weights wy,...,wxg € R” and biases by,...,bxg € R. The initialization procedure
could be for instance “Sphere”. Upon initialization, our unit is computing a function

x +— max{(wi,x) + b1,..., (wk, ) + bx } with non-linear locus that we denote L.

2. For each unit, sample a vector ¢ uniformly from the cube [—1, 1]™. Alternatively, sample cas a
random convex combination of a random subset of the training data, so that ¢ = Zgl DiTsy
where (p1, ..., pm) is arandom probability vector and x1, . . . , Z;, are m randomly selected

training input examples.

3. Now set the weights as w1, . . ., wx and the biases as by + (w1, ¢),...,bx + (wg, c). Now
our unitis computing a function x — max{(wg, x)+bg+ (w, ¢) } = max{(wg, x+c)+by}.

Hence the nonlinear becomes L — c.

3.K Experiment details and additional experiments

In this section, we provide details on the implementation and additional experimental results. All
the experiments were implemented in Python using PyTorch (Paszke et al), 2o19), numpy (Harris
et all, 2020), scipy (Jones et all, 2oo1) and mpi4py (Dalcin et all, po11), with plots created using mat-
plotlib (Huntet, 2007). In the experiments concerning the network training, we used the MNIST
dataset (LeCun and Cortes, 2010). PyTorch, numpy, scipy and mpi4py are made available under
the BSD license, matplotlib under the PSF license, and MNIST dataset under the Creative Commons
Attribution-Share Alike 3.0 license. We conducted all experiments on a CPU cluster that uses Intel
Xeon IceLake-SP processors (Platinum 8360Y) with 72 cores per node and 256 GB RAM. The most ex-
tensive experiments were usually running for 2-3 days on 32 nodes. The computer implementation
of the key functions is available on GitHub at https://github.com/hanna-tseran/maxout_

complexity.
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For the MNIST experiments, we use the Adam optimizer with mini-batches of size 128 with the
learningrate 0.001 and the standard Adam hyperparameters from PyTorch (betas are 0.9 and 0.999).
Counting at initialization was performed in the window [—50, 50]2, in the training experiments in
the window [—400, 400]? defined on the slice, and images of the regions and the decision boundary
were obtained in the window [—50, 50]? also defined on the slice. All results are averaged over 30
instances where applicable. The network architectures are specified in the individual experiments.
The parameter initialization procedures are implemented following the descriptions in Section k..
For the experiments counting the number of activation regions and pieces in the decision boundary,
we use homemade implementations of the algorithms described in Section R.I. Further below, we

present the details and additional results of the individual experiments.

Details on Figure . We consider a network with 2 input units, three layers of rank-3 maxout
units of width 3, and a single linear output unit. We fix three parameter vectors 0y, 01, 5 drawn from
a normal distribution over the parameter space and define a grid of parameter values 0(£1, &) =
Oo+E161+E20, with (€1, &) taking 102400 uniformly spaced valuesin [—1, 1]%. For each of these pa-
rameter values, we estimate the number of linear regions that the represented function has over the
square [—1, 1]? in the input space. To this end, we evaluate the gradient of the function over 102400
uniformly spaced input points and take the number of distinct values as an estimate for the number
of linear regions. Then we plot the estimated number of linear regions as a function of (§1,&2). A

subset of 25 out of the evaluated functions is shown in Figure g.11.

Comparison to the upper bound Figures and complement Figure .3, Figure g.14 com-

pares the number of activation regions and linear pieces in the decision boundary to the formulas
both with and without the constants, while Figure demonstrates the results for different values
of K.

Effects of the depth and the number of units on the number of linear regions Results adding
more information to Figure .3 are in Figure.14. It shows that ReLU networks and maxout networks
with K = 2 have a similar number of activation regions that does not depend on the network depth
but rather on the total number of units. This figure also shows that maxout networks with ranks
K > 2tend to have fewer regions as the depth increases, but the number of units remains constant,

and that the difference in the number of regions becomes more apparent for larger ranks.

Effects of different initializations on training Figure is a more detailed version of Figure
R.6. It shows how convergence speed changes for different network depths and different maxout
ranks given different initializations. The improvement from maxout-He, sphere, and many regions
initializations compared to ReLU-He initialization becomes more noticeable with larger network

depth and larger maxout rank. We have also checked how the Steinwart initialization affects the
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convergence speed, but found no significant difference in this particular experiment. We used the
approach where c is taken as a convex combination of all training data points (weights p uniformly

at random from the probability simplex). The results are shown in Figure .

Effects of different initializations on the number of activation regions and pieces in the de-
cision boundary during training Figure f.18 adds more information to Figure .d and demon-
strates how the number of activation regions and linear pieces in the decision boundary changes for
different initializations during training on the MNIST dataset. We observe that the number of acti-
vation regions and pieces of the decision boundary increase for all tested initialization procedures as
training progresses. Nonetheless, the number remains much lower than the theoretical maximum.

Figure illustrates how linear regions and the decision boundary evolve during training.

21

'E;

l

Ty

"N

~
<
s
7
L

TR

’a '

8 -
7

Figure 3.11: A few functions represented by a maxout network for different parameter valuesin a 2D
slice of parameter space. For each function, we plotregions of the input space with different gradient
values using different colors.
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Figure 3.12: Comparison to the formulas with and without the constants for the number of activation
regions and linear pieces in the decision boundary from Theorem §.d and Theorem .11 respectively.
Networks had 100 units and maxout rank K = 2. The settings are similar to those in Figure @
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Figure 3.13: Comparison to the formula from Theorem f.d for maxout ranks X = 3 and K = 5.
The networks were initialized with maxout-He normal initialization. We observe the increase in the
number of activation regions as the maxout rank increases, and for networks with higher maxout
rank deeper networks tend to have less regions than less deep networks with the same rank.
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Figure 3.14: Difference between the effects of depth and number of neurons on the number of acti-
vation regions. These plots are additional to Figure .3 and have similar settings. ReLU and maxout
networks with ' = 2 have a similar number of linear regions. For maxout rank K > 2 deeper
networks tend to have less regions than less deep networks with the same rank. For K = 3 the gaps
between different depths are smaller than for K = 5.
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Figure 3.15: Effect of the Steinwart initialization approach on the convergence speed during training
on the MNIST dataset for a network with 200 units and 5 layers. Maxout rank was K = 5. In this
experiment, for various initialization procedures, the addition or omission of a random shift of the
non-linear regions of different units led to similar training curves.
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Figure 3.16: Effect of the initialization on the convergence speed during training on the MNIST
dataset of networks with 200 units depending on the network depth and the maxout rank. Maxout-
He, sphere, and many regions initializations behave similarly, and the improvement in the conver-
gence speed becomes more noticeable for larger network depth and maxout rank.
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(2) Linear regions.
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(b) Decision boundary.

Figure 3.17: Evolution of the linear regions and the decision boundary during training on MNIST in
a 2D slice determined by three random input points from the dataset. The network had 3 layers, a
total of 100 maxout units of rank X = 2, and was initialized with the maxout-He initialization.
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(d) Maxout network with the sphere initialization.
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(e) Maxout network with the many regions initialization.

Figure 3.18: Change in the number of linear regions and the decision boundary pieces during 100
training epochs given different initializations. Networks had 100 neurons and for maxout networks
K = 2. Boththe number of linear regions and linear pieces of the decision boundary increase during
training for all initializations but remain much smaller than the theoretical maximum. The settings

were the same as in Figure E
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Chapter 4

Expected gradients of maxout networks
and consequences to parameter

initialization

4.1 Introduction

We study the gradients of maxout networks and derive a rigorous parameter initialization strat-
egy as well as several implications for stability and expressivity. Maxout networks were proposed
by Goodfellow et all (2013) as an alternative to ReLU networks with the potential to improve issues
with dying neurons and attain better model averaging when used with Dropout (Hinton et al), 2012).
Dropoutis used in transformer architectures (Vaswani et al), 2017), and maximum aggregation func-
tions are used in Graph Neural Networks (Hamilton, 2020). Therefore, we believe that developing
the theory and implementation aspects of maxout networks can serve as an interesting platform
for architecture design. We compute bounds on the moments of the gradients of maxout networks
depending on the parameter distribution and the network architecture. The analysis is based on
the input-output Jacobian. We discover that, in contrast to ReLU networks, when initialized with
a zero-mean Gaussian distribution, the distribution of the input-output Jacobian of a maxout net-
work depends on the network input, which may lead to unstable gradients and training difficulties.
Nonetheless, we can obtain a rigorous parameter initialization recommendation for wide networks.
The analysis of gradients also allows us to refine previous bounds on the expected number of linear
regions of maxout networks at initialization and derive new results on the length distortion and the
NTK.

Maxout networks A rank- /K maxout unit, introduced by Goodfellow et al| (2013), computes the
maximum of K real-valued parametric affine functions. Concretely, a rank- K’ maxout unit with n

inputs implements a function R" — R; & + maxyc(g){(Wk, ®) + br}, where W;, € R" and
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by € Rk € [K] :={1,..., K}, are trainable weights and biases. The K arguments of the max-
imum are called the pre-activation features of the maxout unit. This may be regarded as a multi-
argument generalization of a ReLU, which computes the maximum of a real-valued affine function
and zero. Goodfellow et al! (2013) demonstrated that maxout networks could perform better than
ReLU networks under similar circumstances. Additionally, maxout networks have been shown to
be useful for combating catastrophic forgetting in neural networks (Goodfellow et al), o1g). On the
other hand, Castaneda et al| (2019) evaluated the performance of maxout networks in a big data
setting and observed that increasing the width of ReLU networks is more effective in improving per-
formance than replacing ReLUs with maxout units and that ReLU networks converge faster than
maxout networks. We observe that proper initialization strategies for maxout networks have not
been studied in the same level of detail as for ReLU networks and that this might resolve some of the

problems encountered in previous maxout network applications.

Parameter initialization The vanishing and exploding gradient problem has been known since
the work of Hochreiter (1991). It makes choosing an appropriate learning rate harder and slows
training (Sun|, 2o1g). Common approaches to address this difficulty include the choice of specific
architectures, e.g. LSTMs (Hochreiter, 1991) or ResNets (He et al), 2016), and normalization methods
such as batch normalization (loffe and Szegedy, 2015) or explicit control of the gradient magnitude
with gradient clipping (Pascanu et all, 2013). We will focus on approaches based on parameter ini-
tialization that control the activation length and parameter gradients (LeCun et all, 2o12; Glorot and
Bengio, 2010; He et al), o1g; Gurbuzbalaban and Hu, 2021; Zhang et al, 2019; Bachlechner et al/, 2o21).
He et al! (2o15) studied forward and backward passes to obtain initialization recommendations for
ReLU. A more rigorous analysis of the gradients was performed by Hanin and RolnicK (2018); Hanin
(2018), who also considered higher-order moments and derived recommendations on the network
architecture. Sun et al| (2018) derived a corresponding strategy for rank K = 2 maxout networks.
For higher maxout ranks, Tseran and Montudfar (2021) considered balancing the forward pass, as-
suming Gaussian or uniform distribution on the pre-activation features of each layer. However, this
assumption is not fully justified. We will analyze maxout network gradients, including the higher
order moments, and give a rigorous justification for the initialization suggested by [[seran and Mon -

tdfar (2o21).

Expected number of linear regions Neural networks with piecewise linear activation functions
subdivide their input space into linear regions, i.e., regions over which the computed function is
(affine) linear. The number of linear regions serves as a complexity measure to differentiate net-
work architectures (Pascanu et al), po14; Montufar et all, po14; Telgarskyj, po1g, 2016). The first re-
sults on the expected number of linear regions were obtained by Hanin and Rolnick (20194,b) for
ReLU networks, showing that it can be much smaller than the maximum possible number. Tseran

and Montufar (2021) obtained corresponding results for maxout networks. An importantfactor con-
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trolling the bounds in these works is a constant depending on the gradient of the neuron activations
with respect to the network input. By studying the input-output Jacobian of maxout networks, we

obtain a refined bound for this constant and, consequently, the expected number of linear regions.

Expected curve distortion Another complexity measure is the distortion of the length of an in-
put curve as it passes through a network. Poole et al| (2016) studied the propagation of Riemannian
curvature through wide neural networks using a mean-field approach, and later, a related notion of
“trajectory length” was considered by Raghu et al. (2017). It was demonstrated that these measures
can grow exponentially with the network depth, which was linked to the ability of deep networks to
“disentangle” complex representations. Based on these notions, Murray et al) (2022) studies how to
avoid rapid convergence of pairwise input correlations, vanishing and exploding gradients. How-
ever, Hanin et al! (2021) proved that for a ReLU network with He initialization the length of the curve
does not grow with the depth and even shrinks slightly. We establish similar results for maxout

networks.

NTK Itis known that the neural tangent kernel (NTK) of a finite network can be approximated by
its expectation (Jacot et al}, 2018). However, for ReLU networks Hanin and Nica (2020a) showed that
if both the depth and width tend to infinity, the NTK does not converge to a constant in probability.
By studying the expectation of the gradients, we show that similarly to ReLU, the NTK of maxout

networks does not converge to a constant when both width and depth are sent to infinity.

Contributions Our contributions can be summarized as follows.

o For expected gradients, we derive stochastic order bounds for the directional derivative of the
input-output map of a deep fully-connected maxout network (Theorem l.1) as well as bounds for
the moments (Corollary ls.3). Additionally, we derive equality in distribution for the directional
derivatives (Theorem l4.3), based on which we also discuss the moments (Remark [4.4) in wide
networks. We further derive the moments of the activation length of a fully-connected maxout
network (Corollary [4.9).

e We rigorously derive parameter initialization guidelines for wide maxout networks prevent-
ing vanishing and exploding gradients and formulate architecture recommendations. We exper-
imentally demonstrate that they make it possible to train standard-width deep fully-connected
and convolutional maxout networks using simple procedures (such as SGD with momentum and
Adam), yielding higher accuracy than other initializations or ReLU networks on image classifica-

tion tasks.

e We derive several implications refining previous bounds on the expected number of linear re-

gions (Corollary [4.6), and new results on length distortion (Corollary |4.7) and the NTK (Corol-

lary [4.d).
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Figure 4.1: Expectation of the directional derivative of the input-output map E[||Jx ()ul?] for
width-2 fully-connected networks with inputs in R?. For maxout networks, this expectation de-
pends on the input, while for ReLU networks, it does not. Input points & were generated as a grid
of 100 x 100 points in [—10%, 10%]?, and u was a fixed vector sampled from the unit sphere. The
expectation was estimated based on 10,000 initializations with weights and biases sampled from

N(0,1).

4.2 Preliminaries

Architecture We consider feedforward fully-connected maxout neural networks with ng inputs,
Lhiddenlayers of widthsny, ..., nr_1,and alinear outputlayer, which implement functions of the
form N = wpog_j0---0¢1. Thel-thhiddenlayerisafunction ¢;: R™-1 — R™ with components
i € [ng] :=={1,...,n} given by the maximum of i > 2 trainable affine functions ¢; ; : R™~-1 —
R; (-1 — maxke[K]{Wi(fk):B(l_l) + bz(.yl,)g},where Wz(,lk) € R™-1,b;;, € R. Here (=D ¢ Ru-1

12t 1 )

to denote the kth pre-activation of the ith neuron in the [th layer. Finally ¢): R"2-1 — R isa

denotes the output of the (I — 1)th layer and z© = 2. We will write wgf,)g = W;’
linear output layer. We will write @ = {W b} for the parameters. Unless stated otherwise, we
assume that for each layer, the weights and biases are initialized as i.i.d. samples from a Gaussian
distribution with mean 0 and variance ¢/n;_1, where c is a positive constant. For the linear output
layer, the variance is set as 1 /ny,_1. We shall study appropriate choices of c. We will use || - || to
denote the /5 vector norm. We recall that a real-valued random variable X is said to be smaller
than Y in the stochastic order, denoted by X < Y,if Pr(X > z) < Pr(Y > z)forallz € R. In
Section [4.A, we list all the variables and symbols with their definitions, and in Section [4.B, we review

basic notions about maxout networks and random variables that we will use in our results.

Input-output Jacobian and activation length We are concerned with the gradients of the out-
puts with respect to the inputs, VN;(x) = VzN;, and with respect to the parameters, VN;(©) =
VeNN;. In our notation, the argument indicates the variables with respect to which we are tak-
ing the derivatives. To study these gradients, we consider the input-output Jacobian Jy/(x) =
[VNL(2), ...,V Ny, ()]". To see the connection to the gradient with respect to the network pa-
rameters, consider any loss function £ : R"Z — R. A short calculation shows that, for a fixed input

0

x € R", the derivative of the loss with respect to one of the weights W', ; of a maxout unit is
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(VLN (), J/\/(wgl)»azgl_l) if k' = argmaxk{wgfl)c} and zero otherwise, i.e.

25 = C, W) |y (2 ul 2, (4.1

where C(xz, W) := ||JN(3351))||_1<V£(N(:B)), JN(mgl)» and u = e; € R™. A similar decom-
position of the derivative was used by Hanin (2018); Hanin and Rolnick (2018) for ReLU networks.
By (l4.d) the fluctuation of the gradient norm around its mean is captured by the joint distribution
of the squared norm of the directional derivative || Jxs(x)u||? and the normalized activation length
AW = ||z®]|2 /n;. We also observe that || () u||? is related to the singular values of the input-
output Jacobian, which is of interest since a spectrum concentrated around one atinitialization can
speed up training (Saxe et al), po14; Pennington et all, 2017, 2018): First, the sum of singular values is
tr(Jy ()" Iy () = 05 (I ()T Iy (@) wiy wg) = S35 (| I (@) wil|?, where the vectors
u; form an orthonormal basis. Second, using the Stieltjes transform, one can show that singular

values of the Jacobian depend on the even moments of the entries of J (Hanin, 2018, Section 3.1).

4.3 Results

4.3.1 Bounds on the input-output Jacobian

Theorem 4.1 (Bounds on ||Jy(z)w||?). Consider a maxout network with the settings of Section [4.3.
Assume that the biases are independent of the weights but otherwise initialized using any approach. Let
u € R be a fixed unit vector. Then, almost surely, with respect to the parameter initialization, for any

input into the network x € R™, the following stochastic order bounds hold:
1 L—1 c ng 1 L—1 ¢ ny
o 1 - >0 K) St v @)ul* <o oo, [ - > EL0d, K),
=1 i=1 =1 =1

where & ;( X3, K)and Eli (x3, K) arerespectively the smallest and largest order statistic in a sample of size
K of chi-squared random variables with 1 degree of freedom, independent of each other and of the vectors u

and x.

The proof is in Section [¢.d. It is based on appropriate modifications to the ReLU discus-
sion of Hanin and Nica (2020b); Hanin et all (2021) and proceeds by writing the Jacobian norm
as the product of the layer norms and bounding them with minkE[K]{<Wi(’lk), u=1)2} and
maxke[K]{(Wél’g, ul=1))2}. since the product of a Gaussian vector with a unit vector is always
Gaussian, the lower and upper bounds are distributed as the smallest and largest order statistics in
a sample of size K of chi-squared random variables with 1 degree of freedom. In contrast to ReLU
networks, we found that for maxout networks, it is not clear how to obtain equality in distribution

involving only independent random variables because of the dependency of the distribution of
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Figure 4.2: Expected value and interquartile range of the squared gradients ng(ON/ 8Wi7k/7j)2 as
a function of depth. Weights are sampled from N (0, ¢/fan-in) in fully-connected networks and
N(0,c/(k?* - fan-in)), where k is the kernel size, in CNNs. Biases are zero, and the maxout rank K
is 5. The gradient is stable in wide fully-connected and convolutional networks with ¢ = 0.55555
(red line), the value suggested in Section lg.4. The dark and light blue lines represent the bounds
from Corollary |43, and equal 1/£ = 0.36 and 1/8 = 12. The yellow line corresponds to the ReLU-
He initialization. We compute the mean and quartiles from 100 network initializations and a fixed
input. The same color lines that are close to each other correspond to 3 different unit-norm network
inputs.

|| Jar()u||? on the network input & and the direction vector u (see Figure [g.4). We discuss this in
more detail in Section E

Corollary 4.2 (Bounds on the moments of || Jx(z)w||?). Consider a maxout network with the settings
of Section [g.3. Assume that the biases are independent of the weights but otherwise initialized using any
approach. Let u € R™ be a fixed unit vector and x € R™° be any input into the network, Then

i) %(csf—l < E[[| Iy (z)ull?] < %(cm“l,

2 L—1
1 1
i) Var [|| Iy (z)ul?] < (nL> ALY [ 21 o 4 E — + — — gL s
@ [H w(@)ul ] T\ o *P — nK  np
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2t AN t(L—1) 2 = 1 1
@iii) E [|In(z)ul*] < <n> (cK) expqt +— ], teN,

mK n
0 5 L

where the expectation is taken with respect to the distribution of the network weights. The constants S and £
depend on K and denote the means of the smallest and the largest order statistic in a sample of K chi-squared
random variables. For K = 2, ...,10,8 € [0.02,0.4] and £ € [1.6, 4]. See Tablely.d in Section gD for

the exact values.

Notice that for ¢ > 2, the {th moments of the input-output Jacobian depend on the architec-
ture of the network, but the mean does not (Corollary [4.9), similarly to their behavior in ReLU net-
works Hanin (2018). We also observe that the upper bound on the tth moments can grow expo-
nentially with the network depth depending on the maxout rank. However, the upper bound on
the moments can be tightened provided corresponding bounds for the largest order statistics of the

chi-squared distribution.

4.3.2 Distribution of the input-output Jacobian

Here we present the equality in distribution for the input-output Jacobian. It contains dependent
variables for the individual layers and thus cannot be readily used to obtain bounds on the moments,

but it is particularly helpful for studying the behavior of wide maxout networks.

Theorem 4.3 (Equality in distribution for || Jxr(x)w||?). Consider a maxout network with the settings
of Section [g.d. Let u € R™ be a fived unit vector and x € R"™,x # 0 be any input into the network.

Then, almost surely, with respect to the parameter initialization, || J (x)w||? equals in distribution

1 L—1 c ny 9
2 —_
g X 11 - > (Ui\/l — cos? Yy(i-1) yu-1) + Ei(N(0, 1), K) cos 7;(1—1),1,(1—1)) ,
=1 i

where v; and = ;(N(0,1), K) are independent, v; ~ N(0,1), Z;;(N(0,1), K) is the largest
order statistic in a sample of K standard Gaussian random variables. Here Ve () denotes the
angle berween r(V) = (mgl),...,a:gl), 1) and u) = (ugl), e ,ugl),O) in R where
ul) = W(l)u(l_l)/HW(l)u(l_l)H when WM (-1) # 0 and 0 otherwise, and u®) = w. The
matrices W consist of rows Wi = Wl(’lk), € R™-1, where k' = argmaxke[K]{Wiﬁl]zm(l_l) + bgyll)g}

(2

This statement is proved in Section [¢.H. The main strategy is to construct an orthonormal basis
B = (by,...,by,),where by := (V) /||r())||, which allows us to express the layer gradient depend-
ing on the angle between r(*) and u®.

Remark 4.4 (Wide networks). By Theorem [.d, in a maxout network the distribution of
|| Jpr(2)w|? depends on the cos Ye(i-1) y(-1), which changes as the network gets wider or deeper.
Since independent and isotropic random vectors in high-dimensional spaces tend to be almost

orthogonal, we expect that the cosine will be close to zero for the earlier layers of wide networks,
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and individual units will behave similarly to squared standard Gaussians. In wide and deep
networks, if the network parameters are sampled from N(0,¢/n;_1),c = 1/M,and K > 3, we
expect that | cos Ve u® | ~ 1 for the later layers of deep networks and individual units will behave
more as the squared largest order statistics. Here M is the second moment of the largest order
statistic in a sample of size K of standard Gaussian random variables. Based on this, for deep and

wide networks, we can expect that

21 . L L—1__ "L
E[l|Jnr(@)ul]"] = —= (M) = —. (4-2)

no no
This intuition is discussed in more detail in Section |4.H. According to (4.2), we expect that the ex-
pected gradient magnitude will be stable with depth when an appropriate initialization is used. See

Figure 4.7 for a numerical evaluation of the effects of the width and depth on the gradients.

4.3.3 Activation length

To have a full picture of the derivatives in (l4.1), we consider the activation length. The full version

and proof of Corollary [4.q are in Section [4.H. The proof is based on Theorem |3, replacing u with
r/ |l

Corollary 4.5 (Moments of the normalized activation length). Consider a maxout network with the
settings of Sectionlg.d. Let & € R™ be any input into the network. Then, for the moments of the normalized
activation length AW of the l'th layer we have

l/
Mean: E {A(l,)} = H;(O)H2i (CM)ZI + Z (

no

(cM)l’—j“),

j=2 Nl
, ¢ , Lop
Moments of ordert > 2: G ((CM)H ) <E [(A(l )) } < Go | (cK) exp {Z —
=1 an
The expectation is taken with respect to the distribution of the network weights and biases, and M is
a constant depending on K that can be computed approximately, see Table .9 for the values for K =

2, ..., 10. See Section Yy.B for the variance bounds and details on functions G1, Go.

We could obtain an exact expression for the mean activation length for a finitely wide maxout
network since its distribution only depends on the norm of the input, while this is not the case for
the input-output Jacobian (Sections [¢.3.] and [4.3.9). We observe that the variance and the tth mo-
ments, ¢ > 2, have an exponential dependence on the network architecture, including the maxout
rank, whereas the mean does not, similarly to the input-output Jacobian (Corollary ls.d). Such be-
havior also occurs for ReLU networks (Hanin and Rolnick, 2018). See Figure @ in Section [g.H for an

evaluation of the result.
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Table 4.1: Recommended values for the constant c for different maxout ranks K based on Section

L4

K 2 3 4 ) 6 7 8 9 10
c 1 0.78391 0.64461 0.55555 0.49462 0.45039 0.41675 0.39023 0.36872

4.4 Implications to initialization and network architecture

We now aim to find initialization approaches and architectures that can avoid exploding and van-
ishing gradients. We take the annealed exploding and vanishing gradients definition from Hanin

(2018) as a starting point for such investigation for maxout networks. Formally, we require

2 2
E ‘%((l”)”) =0O(1), Var ‘%(g) = 0(1),
aWi,k’,j 8Wz kg
2t
supE 8[:%3)3) 00, vVt > 3,
1>1 oW,

where the expectation is with respect to the weights and biases. Based on (j4.]) these conditions can

be attained by ensuring that similar conditions hold for ||Jxr(2)w|[? and A®).

Initialization recommendations Based on Corollary |43, the mean of ||Jxs(z)u||? can be sta-
bilized for some ¢ € [1/£,1/8]. However, Theorem [4.3 shows that ||Jy ()u|?> depends on the
input into the network. Hence, we expect that there is no value of ¢ stabilizing input-output Jaco-
bian for every input simultaneously. Nevertheless, based on Remark [y.4, for wide and deep maxout
networks, E[|| Jy(x)u||?] = nr /ngif ¢ = 1/M, and the mean becomes stable. While Remark 4.4
does not include maxout rank K = 2, the same recommendation can be obtained for it using the
approach from He et al| (2015), see Sun et al! (2018). Moreover, according to Corollary @, the mean
of the normalized activation length remains stable for different network depths if ¢ = 1 /M. Hence,
we recommend ¢ = 1/M as an appropriate value for initialization. See Table 4.4 for the numerical
value of cfor K' = 2,...,10. We call this type of initialization, when the parameters are sampled
from N (0, ¢/fan-in), ¢ = 1/M, “maxout initialization”. We note that this matches the previous

recommendation from Tseran and Montufar (2021), which we now derived rigorously.

Architecture recommendations In Corollaries 4.2 and [4.d the upper bound on the moments ¢ >
2 of ||Jy(x)ul|? and AY = || |2/n; can grow exponentially with the depth depending on
the values of (cK)* and Zfz_ll 1/(nK). Hence, we recommend choosing the widths such that

lL:_ll 1/(mK) < 1,which holds, e.g.,ifn; > L/K,Vl =1,..., L — 1, and choosing a moderate

value of the maxout rank K. However, the upper bound can still tend to infinity for the high-order
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moments. From Remark |44, it follows that for K > 3 to have a stable initialization independent
of the network input, a maxout network has to be deep and wide. Experimentally, we observe that
for 100-neuron wide networks with K = 3, the absolute value of the cosine that determines the
initialization stability converges to 1 at around 60 layers, and for K = 4, 5, at around 30 layers. See
Figure [4.6 in Section [¢.H. To sum up, we recommend working with deep and wide maxout networks
with widths satisfying ZZL:EI 1/(nK) < 1, and choosing the maxout-rank not too small nor too

large, e.g., K = 5.

4.5 Implications to expressivity and NTK

With Theorems[4.dand |4.3in place, we can now obtain maxout versions of the several types of results

that previously have been derived only for ReLU networks.

4.5.1 Expected number of linear regions of maxout networks

For a piece-wise linear function f: R™ — R, alinear regionis defined as a maximal connected sub-
set of R™ on which f has a constant gradient. Tseran and Montufar (2021) and Hanin and Rolnick
(2019b) established upper bounds on the expected number of linear regions of maxout and ReLU
networks, respectively. One of the key factors controlling these bounds is Cgraq, which is any upper
bound on (supcgne E[||VC x(2)|[!])'/¢, forany t € Nand 2z = 1,..., N. Here (, , is the kth
pre-activation feature of the zth unit in the network, [V is the total number of units, and the gradi-
ent is with respect to the network input. Using Corollary [4.2, we obtain a value for Clgrad for maxout
networks, which remained an open problem in the work of Tseran and Montufar (2021). The proof

of Corollary [4.6 and the resulting refined bound on the expected number of linear regions are in

Section @

Corollary 4.6 (Value for Cg.q). Consider a maxout network with the settings of Section .3 Assume
that the biases are independent of the weights but otherwise initialized using any approach. Consider the

pre-activation feature C, j of aunitz = 1,..., N. Then, foranyt € N,

1 L-1
t _1 L—1 t 1
(;&50 2 [”V@k(ifﬂt]) < ng * max {L (cK) 2 }eXP {2 (Z K + 1> } .
=1
The value of Cyyaq given in Corollaryly.§ grows as O((cK)E ! exp{t S E M1/ (mK)}). Thefirst
factor grows exponentially with the network depth if cK > 1. This is the case when the network
is initialized as in Section @ However, since K is usually a small constantand ¢ < 1,cK > 1

is a small constant. The second factor grows exponentially with the depth if Zf;ll 1/(mK) > 1.
Hence, the exponential growth can be avoidedifn; > (L — 1)/K,Vi=1,...,L — 1.
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4.5.2 Expected curve length distortion

Let M be a smooth 1-dimensional curve in R™ of length len(M) and N (M) C R"C the image
of M under the map ¢ — N(x). We are interested in the length distortion of M, defined as
len(NV(M))/len(M). Using the results from Section j4.3.1, observing that the input-output Jaco-
bian of maxout networks is well defined almost everywhere, and following Hanin et al| (2021), we

obtain the following corollary. The proof is in Section [¢.H.

Corollary 4.7 (Expected curve length distortion). Consider a maxout network with the settings of Sec-
tionlg.d. Assume that the biases are independent of the weights but otherwise initialized using any approach.
Let M be a smooth 1-dimensional curve of unit length in R™0. Then, the following upper bounds on the mo-

ments of len(N (M)) hold:

1

2 _
E [len(\(M))] < (”L) (L),
Var [len(N'(M))] < E(cﬁ)Lil,

t L—1
nr 2 H(L-1) t2 1 1
E |1 M) < [ == K) 2 . 4=
[en(/\/( ))]<n0> (cK) exp{2 (;an+nL>};
where L is a constant depending on K, see Table ly.d in Section [g.D for values for K = 2, . . ., 10.

Remark 4.8 (Expected curve length distortion in wide maxout networks). If the network is initial-
ized according to Section [4.4, using Remark [4.4 and repeating the steps of the proof of Corollary [4.7,
we get E [len(N (M))] < (nr,/no)'/? and Var [len(N (M))] = nr, /no.

Hence, similarly to ReLU networks, wide maxout networks, if initialized to keep the gradients
stable, have low expected curve length distortion at initialization. However, we cannot conclude
whether the curve length shrinks. For narrow networks, the upper bound does not exclude the pos-
sibility that the expected distortion grows exponentially with the network depth, depending on the

initialization.

4.5.3 On-diagonal NTK
We denote the on-diagonal NTK with K/ (z, z) = >, (ON (x)/96;)%. In Section [g.] we show:

Corollary 4.9 (On-diagonal NTK). Consider a maxout network with the settings of Section l4.3. Assume

thatny, = 1 and that the biases are initialized to zero and are not trained. Assume that S < ¢ < L, where
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Table 4.2: Accuracy on the test set for networks trained using SGD with Nesterov momentum. Ob-
serve that maxout networks initialized with the maxout or max-pooling initialization perform sig-
nificantly better than the onesinitialized with other initializations and better or comparably to ReLU
networks.

MAXOUT RELU

Small value Max-pooling init Maxout init Naive He init

VALUE OF ¢ Section [1.6 (Ours) Sectionls.4 (Ours) ReLU He
0.1 0.55&0.27 0.55555 2 2
FULLY-CONNECTED
MNIST 11.35%0-00 — 97.8%0:15 53.22%24.08 g7 43+0.06
Iris 30.00%0-00 — 91.67+3-73 82,5493 91.67+3-73
CONVOLUTIONAL

MNIST 11.35%0.00 99.58+0.03 99.59+0.04 98.02%0-21 99 49+0.04
CIFAR-10  10.00%+0-00 91.7+017 91.21*0-13 44.84*0-69 90, 12+0-25
CIFAR-100  1.00*0:00 65.33%0-27 65.39+0-39 12.02%0-8 59 59+0.82
Fashion 10 Oo:I:O.UO 93.55:|:0.13 93 49:|:0.l3 81 56:t0.15 93 28i0'11
MNIST ’ ) ’ ’
SVHN 19.59+0-00 97.3+0.04 97.78+0.02 50.97FL71  96.74%0:03

the constants S, £ are as specified in Tablels.d. Then,

cS L-2 cl L—ZML—I
10 p < Bl (@, )] < Hzc(O)H2()nO

P

)

zc( )H4 —

E[K (2, 2)?] < 2P Py (cK)XE2) e

||M

where P = Zf;ol ny, Py = ZlL:o nyny_1, and M is as specified in Table|s.d.

By Corollary g, E[Kx (@, )2/ (B[Kx (@, 2)])2 is in O((Pw / P)C™ exp{ S, 1/(mK)}),
where C' depends on £, M and K. Hence, if widths ny,...,nr_1 and depth L tend to infinity,
this upper bound does not converge to a constant, suggesting that the NTK might not converge to
a constant in probability. This is in line with previous results for ReLU networks by Hanin and Nica

(20204).

4.6 Experiments

We check how the initialization proposed in Section [4.4 affects the network training. This initial-
ization was first proposed heuristically by Tseran and Montufar (2021), where it was tested for

10-layer fully-connected networks with an MNIST experiment. We consider both fully-connected
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Table 4.3: Accuracy on the test set for the networks trained with Adam. Observe that maxout net-
works initialized with the maxout or max-pooling initialization perform better or comparably to
ReLU networks, while maxout networks initialized with ReLU-He converge slower and perform

worse.
MAXOUT RELU
Max-pooling init Maxout init Naive He init
VALUE OF ¢ Section [4.6 (Ours) Section lg.4 (Ours)  ReLU He
0.55 & 0.27 0.55555 2 2
FULLY-CONNECTED

1/10 epochs — 97.56+018 9740030 9p 72+0.64
MNIST  2/10 epochs — 98.1010:09  9g7.97+012 g7 54+0.16

All epochs — 98.12+0-10 98.13+0-09 g7 37+0.08

CONVOLUTIONAL

1/10 epochs 99.06+0-15 98.59+0-58 98.54+0:52 99, 14+0-32
MNIST  2/10 epochs 99.39+0-13 98.51+0:25 99.17+0-13  99,41+0-05

All epochs 99,53+0.04 99.47+0:07 99.47+0:04 99 45+0.06
Fashion  L/10epochs 92.04%0-29 92.35%012 87.95%0-33 92 45+0-41
J;I;T 2/10epochs  92.61%0-22 92.851021 9035038 g9 71£0.25

All epochs 93.57+0-17 93.45+0-10 91.63%0:36 92 9g+0-13

1/10epochs  88.25+0-49 87.31%051 74.37%037  85.95+0-30
CIFAR-10  2/10epochs  88.79+0-72 87.96%0:7 81.94%0:34 8712023

All epochs 91.33+0-31 91.06%0-22 85.23+0-20 g7, 70+0-10

1/10 epochs 50.30%3:34 53.43+1.08 19.22%051 50 39+0-91
CIFAR-100 2/10 epochs 57.54F1:64 57.65+0-75 33.21F0:51  51,34+0:51

All epochs 65.33+1:26 61.96%0-58 37.5810:23  52,95+0-30

and convolutional neural networks and run experiments for MNIST (LeCun and Cortes, 2010), Iris
(Fisher, 1936), Fashion MNIST (Xiao et al), 2017), SVHN (Netzer et al), po11), CIFAR-10 and CIFAR-100
(Krizhevsky et al|, 2oog). Fully connected networks have 21 layers and CNNs have a VGG-19-like
architecture (Simonyan and Zisserman, 2o1g) with 20 or 16 layers depending on the input size, all
with maxout rank 5. Weights are sampled from N (0, ¢/fan-in) in fully-connected networks and
N(0,c/(k?* - fan-in)) in CNNs of kernel size k. The biases are initialized to zero. We report the
mean and std of 4 runs.

We use plain deep networks without any kind of modifications or pre-training. We do not use
normalization techniques, such as batch normalization (loffe and Szegedy, 2015), since this would
obscure the effects of the initialization. Because of this, our results are not necessarily state-of-the-
art. More details on the experiments are given in Section |4.], and the implementation is made avail-

ableathttps://github.com/hanna-tseran/maxout_expected_gradients.
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Max-pooling initialization To account for the maximum in max-pooling layers, a maxout layer
appearing after a max-pooling layer is initialized as if its maxout rank was K x m?, where m? is
the max-pooling window size. For example, we used K = 5 and m? = 4, resultingin ¢ = 0.26573
for such maxout layers. All other layers are initialized according to Section lg.4. We observe that

max-pooling initialization often leads to slightly higher accuracy.

Results for SGD with momentum Tablel4.2reports test accuracy for networks trained using SGD
with Nesterov momentum. We compare ReLU and maxout networks with different initializations:
maxout, max-pooling, smallvalue ¢ = 0.1, and He ¢ = 2. We observe that maxout and max-pooling
initializations allow training deep maxout networks and obtaining better accuracy than ReLU net-
works, whereas performance is significantly worse or training does not progress for maxout net-

works with other initializations.

Results for Adam  Table [4.4 reports test accuracy for networks trained using Adam (Kingma and
Bd, 2015). We compare ReLU and maxout networks with the following initializations: maxout, max-
pooling, and He ¢ = 2. We observe that, compared to He initialization, maxout and max-pooling ini-
tializations lead to faster convergence and better test accuracy. Compared to ReLU networks, max-

out networks have better or comparable accuracy if maxout or max-pooling initialization is used.

4.7 Discussion

We study the gradients of maxout networks with respect to the parameters and the inputs by analyz-
ing a directional derivative of the input-output map. We observe that the distribution of the input-
output Jacobian of maxout networks depends on the network input (in contrast to ReLU networks),
which can complicate the stable initialization of maxout networks. Based on bounds on the mo-
ments, we derive an initialization that provably avoids vanishing and exploding gradients in wide
networks. Experimentally, we show that, compared to other initializations, the suggested approach
leads to better performance for fully connected and convolutional deep networks of standard width
trained with SGD or Adam and better or similar performance compared to ReLU networks. Addi-
tionally, we refine previous upper bounds on the expected number of linear regions. We also derive
results for the expected curve length distortion, observing that it does not grow exponentially with
the depth in wide networks. Furthermore, we obtain bounds on the maxout NTK, suggesting that
it might not converge to a constant when both the width and depth are large. These contributions
enhance the applicability of maxout networks and add to the theoretical exploration of activation

functions beyond ReLU.

Limitations Even though our proposed initialization is optimal in the sense of the criteria spec-

ified at the beginning of Section 4.4, our results are applicable only when the weights are sampled
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from N (0, ¢/fan-in) for some c. Further, we derived theoretical results only for fully-connected net-
works. Our experiments indicate that they also hold for CNNs: Figure [s.d demonstrates that gradi-
ents behave according to the theory for fully connected and convolutional networks, and Tables
and [4.4 show improvement in CNNs performance under the initialization suggested in Section ly.4.

However, we have yet to conduct a theoretical analysis of CNNs.

Future work In future work, we would like to obtain more general results in settings involving
multi-argument functions, such as aggregation functions in graph neural networks, and investigate
the effects that initialization strategies stabilizing the initial gradients have at later stages of train-

ing.
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Proofs and experiment details

Proofs and experiment details are organized as follows.

. @ Notation

o [1.HBasics

« 1.d Bounds for the input-output Jacobian norm || Jx(z)u||?

o 1.0 Moments of the input-output Jacobian norm || Jx(z)u/|?

o l1.H Equality in distribution for the input-output Jacobian norm and wide network results
e [4.E Activation length

e [1.G Expected number of linear regions

o l1.H Expected curve length distortion

o lLINTK

o l1.] Experiment details and additional experiments

4.A Notation

We use the following notation in the paper.

4.A.1  Variables

Network definition

N network

L number of the network layers
l index of a layer

ng input dimension
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width of the /th layer

maxout rank

index of a pre-activation feature, k = 1,..., K

argmax of the collection of pre-activation features, kX’ = argmax; { :cl(f,z,}
function implemented by the /th hidden layer, ¢;: R™-1 — R™

linear output layer, ¢ : R"2-1 — R"L

collection of all network weights

collection of all network biases

collection of all network parameters, ® = {W, b}

ith network parameter; herei =1, ..., |©|

network weights of the kth pre-activation function of the i¢th neuron

in the [th layer, WZ(’lk) € R™-1

network bias of the kth pre-activation function of the 7th neuron

in the [thlayer, b; , € R

network input, x € R™, & = z(©

output of the [th layer, () € R™

kth pre-activation of the ith neuron in the [th layer, :I:E’ll,)C = Wl-sl)x(lfl) + bg,)c
total number of the network units

index of aneuron in the network, z = 1,..., N

kth pre-activation feature of the zth unit in the network

Network initialization

N(u,0%) Gaussian distribution with mean y and variance o2
a positive constant; we assume that the weights and biases for each hidden layer
c
are initialized asii.d. samples from N (0, ¢/n;_1)
Network optimization
L loss function, £ : R"2 — R
gradients of the network outputs with respect to the inputs,
VNi(z)
VNi(x) = VaN;
radients of the network outputs with respect to the parameters,
VNi(©),VeN; ! ’ ’ ’
VNi(©) = VeN,;
input-output Jacobian of the network,
I ()

Jn(x) = [VNi(x), ..., VN, (z)]"
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Variables appearing in the results

u
AD
t

gl,i(X%a K)
El,i(X%a K)

E1,i(N(0,1), K)

Ve®) u®)

Cgrad

M
Ky (x,x)

4.A.2  Symbols

[n] {1,...

a fixed unit vector, u € R™0

normalized activation length of the [th layer, AV = ||z()||2 /n,

order of a moment

the smallest order statistic in a sample of size K

of chi-squared random variables with 1 degree of freedom

the largest order statistic in a sample of size K

of chi-squared random variables with 1 degree of freedom

the largest order statistic in a sample of size K

of standard Gaussian random variables

mean of the smallest order statistic in a sample of K

chi-squared random variables; see Table [s.d for the exact values

mean of the largest order statistic in a sample of K

chi-squared random variables; see Table [4.d for the exact values

the second moment of the largest order statistic in a sample of size K

of standard Gaussian random variables; see Table |4.d for the exact values
standard Gaussian random variable v; ~ N (0, 1)

Y= wl) eruy,

where k' = argmaxke[KJ{Wi(’Qm(ll) + b%}

ul) = W(l)u(lfl)/HW D =1) || when W1 # 0 and 0 otherwise;

matrices consisting of rows W

angle between (V) := (mgl), . ,a,-$f), 1)andu® := (ugl), ey uﬁf}, 0)
in R+t

any upper bound on (sup,cgno E[[|VC, 1 (2)||1]) Y/, forany t € N;
here the gradient is with respect to the network input

smooth 1-dimensional curve of unit length in R"™°

image of the curve M under the map « — N (x), N (M) C R™L
on-diagonal NTK, K/ (z, z) = >_,(ON (x)/06;)?

;n}

|- 1] {5 vector norm

Sst (2 st)
d

len(+)

smaller (larger) in the stochastic order; see Section for the definition
= equality in distribution; see Section for the definition

length of a curve
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Figure 4.3: lllustration of a simple maxout network with two input units, one hidden layer consisting
of two maxout units of rank 3, and an affine output layer with a single output unit.

4.B Basics

4.B.1  Basics on maxout networks
4.B.1.1  Definition

As mentioned in the introduction, a rank- K maxout unit computes the maximum of K real-valued

affine functions. Concretely, a rank- K maxout unit with n inputs implements a function
R" - R; @+ max{(Wg,x) + by},
ke[K]

where Wi, € R"and b, € R,k € [K] := {1,..., K}, are trainable weights and biases. The
K arguments of the maximum are called the pre-activation features of the maxout unit. A rank- K
maxout unit can be regarded as a composition of an affine map with K outputs and a maximum
gate. A layer corresponds to the parallel computation of several such units. For instance, a layer

with n inputs and m maxout units computes functions of the form

mane[K]{<W1(,1k)v ) + bﬁfi}

R" - R™; x+— : ,

maxyep) { (Wi &) + b}

1 . . N ;
l( ,3 are the weights and biases of the kth pre-activation feature of the ith

1
where now WZ.( k:) and b
maxout unit in the first layer. The situation is illustrated in Figure [4.4 for the case of a network with
two inputs, one layer with two maxout units of rank three, and one output layer with a single output

unit.
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ReLU network
Before training After training
1 T 1 T
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
0 AV NXS | com—— : . — 0 AV N | — : P,
ay XN 1 — Za XN [ —— 1 —
class 1 I class 1 |
class 2 ! class 2 !
X breakpoints : X breakpoints :
Z = max-margin boundary ] Z = max-margin boundary ]
3 predicted class 1 i 3 predicted class 1 i
=1 predicted class 2 ] [ predicted class 2 I
-1 : : | | | 1 ! - T T | | | S |
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 20 =20 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Maxout network
Before training After training
1 T 1 T
1 1
1 1
1 1
1 1
1 1
1 1
1 1
| |
o KX XX cmm— | commm— 0 XXX X oommmm— | commm—
class 1 1 class 1 1
class 2 1 class 2 I
X breakpoints : X breakpoints :
<= max-margin boundary I 2= max-margin boundary I
[ predicted class 1 f [ predicted class 1 !
3 predicted class 2 1 3 predicted class 2 1
-1 1 1 I
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 20 =20 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Figure 4.4: Example of a situation where the training is unsuccessful for a ReLU network because all
neurons in the first layer are dead, while a maxout network trains successfully on the same dataset.
We plot the breakpoints in the first layer. Notice that they do not move during the training of a ReLU
network but change their positions in a maxout network.

4.B.1.2 Dying neurons problem

The dying neurons problem in ReLU networks refers to ReLU neurons being inactive on a dataset
and never getting updated during optimization. It can lead to a situation when the training cannot
commence if all neurons in one layer are dead. This problem never occurs in maxout networks since
maxout units are always active. We design a simple experiment to illustrate this issue.

We consider a binary classification task on a dataset sampled from a Gaussian mixture of two
univariate Gaussians N (0.8,0.1) and N (1.6, 0.1). We sample 600 training, 200 validation, and 200
test points. We construct maxout and ReLU networks with 5 layers and 5 units per layer. Maxout
units rank equals 2. We set weights and biases in the first layer so that the breakpoints are left of
the data. For ReLU, we also ensure that the weights are negative to guarantee that the neurons in
the first layer are inactive. Hence, all the units in the first layer of the ReLU network are dead. Then
we train the network for 20 epochs using SGD with a learning rate of 0.5 and batch size of 32. For
the ReLU networks, since all units in the first layer are dead, the training is unsuccessful, and the
accuracy on the test set is 50%. In contrast, for the maxout network, the test set accuracy is 100%.

Figure |4 illustrates this example.
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4.B.2 Basic notions of probability

We ought to remind several probability theory notions that we use to state our results. Firstly, recall
thatif vy, ..., vi are independent, univariate standard normal random variables, then the sum of
their squares, Zle UZ-Q, is distributed according to the chi-squared distribution with k degrees of
freedom. We will denote such a random variable with Xz.

Secondly, the largest order statistic is a random variable defined as the maximum of a random
sample, and the smallest order statistic is the minimum of a sample. And finally, a real-valued
random variable X is said to be smaller than Y in the stochastic order, denoted by X <4 Y, if
Pr(X > z) < Pr(Y > z)forallz € R. We will also denote with 4 equality in distribution
(meaning the cdfs are the same). With this, we start with the results for the squared norm of the

input-output Jacobian ||Jas(x)u|?.

4.B.3 Details on the equation ([1.1)

In ([4.1) we are investigating magnitude of 8[:((,? ) The reason we focus on the Jacobian norm rather

ik j

than on C'is as follows. We have

oL
D) (VLW (@), W, )
8Wi,k’,j

=(VNLN(2)), Ty (zP))z! Y

)

=(VNLW (@), Izl ™, u=e

=C(, W)|| I (2 )u ]

Note that C'(z, W) = (VN L(N (x)),v) withv = Jpr (m(l)) u/||JIn (:B(l)) ul|, ||v|| = 1. Hence
Clx, W) < [[VNLWN ())|llv]] = [IVALWN (x))|. The latter term does not directly depend
on the specific parametrization nor the specific architecture of the network but only on the loss

function and the prediction. In view of the description of 8?/5&?) , the variance depends on the

(1-1) e
J

square of ; . Similarly, the variance of the gradient Vo) L(x) = ( ); depends on

O]
8Wi’k,’j

l—l)”Q

2= = (:135-171) ); and thus depends on [E . This is how activation length appears in (4.1).

4.C  Bounds for the input-output Jacobian norm || Jy () u/|

4.C.1  Preliminaries

We start by presenting several well-known results we will need for further discussion.

Product of a Gaussian matrix and a unit vector
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Lemma 4.10. Suppose W isann x n' matrix with i.i.d. Gaussian entries and u is a random unit vector

in R™ that is independent of W but otherwise has any distribution. Then
. . . . . . . . . . /
1. W is independent of w and is equal in distribution to W v where v is any fixed unit vector in R™ .

2. Ifthe entries of W are sampled i.i.d. from N (u, 02), thenforalli = 1,...,n, Wyu ~ N(u,0?) and
independent of u.

3. Ifthe entries of W are sampled i.i.d. from N (0, 02), then the squared {5 norm ||Wu/|? 4 o2x?2, where

X2 is a chi-squared random variable with n degrees of freedom that is independent of .

Proof. Statement 1 was proved in, e.g., Hanin et al} (2021, Lemma C.3) by considering directly the
joint distribution of Wu and w.

Statement 2 follows from Statement 1if we pick v = e;.

To prove Statement 3, recall that by definition of the £ norm, |[Wul|> = .7, (W;u)® By
Statement 2, forallt = 1,..., n, W;u are Gaussian random variables independent of « with mean
zero and variance 0. Since any Gaussian random variable sampled from N (p1, 02) can be written

as j1 + ov, wherev ~ N (0, 1), we can write ) ", (Wiu)? = o2 S | vZ. By definition of the chi-

squared distribution, Y ;" ; v? is a chi-squared random variable with n degrees of freedom denoted
with X%: which leads to the desired result. O

Stochasticorder Werecall the definition of a stochastic order. Areal-valued random variable X is
said to be smaller than Y in the stochastic order, denoted by X < Y,if Pr(X > z) < Pr(Y > z)
forallz € R.

Remark 4.11 (Stochastic ordering for functions). Consider two functions f : X — Randg :
X — Rthatsatisfy f(z) < g(z) forallz € X. Then, for a random variable X, f(X) <y
g(X). To see this, observe that for any y € R, Pr(f(X) >y)="Pr(X € {z: f(z) > y}) and
Pr(g(X) >y) =Pr(X € {z: g(x) > y}). Since f(z) < g(z)forallz € X, {z: f(x) > y} C
{z: g(z) > y}. Hence, Pr(f(X) > y) < Pr(g(X) > y),and f(X) <g g(X).

Remark 4.12 (Stochastic order and equality in distribution). Considerreal-valued random variables
X,Y and YV.IEX <4 YandY 4 Y, then X < Y. Since Y and Y have the same cdfs by definition
of equality in distribution, forany y € R, Pr(X > ) < Pr(Y > y) = Pr(Y > ).

4.C.2  Expression for || Jy (z)u||?

Before proceeding to the proof of the main statement, given in Theorem |41, we present Proposition
l4.14. Firstly, in Proposition below, we prove an equality that holds almost surely for an input-
output Jacobian under our assumptions. In this particular statement the reasoning closely follows

Hanin et al| (2021, Proposition C.2). The modifications are due to the fact that a maxout network
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Jacobian is a product of matrices consisting of the rows of weights that are selected based on which
pre-activation feature attains maximum, while in a ReLU network, the rows in these matrices are

either the neuron weights or zeros.

Proposition 4.13 (Equality for ||Ja(x)w||?). Let N be a fully-connected feed-forward neural network
with maxout units of rank K and a linear last layer. Let the network have L layers of widths ny, ..., ng,
and ng inputs. Assume that the weights are continuous random variables (that have a density) and that the
biases are independent of the weights but otherwise initialized using any approach. Let u € R"™° be a fixed
unit vector. Then, for any input into the network, * € R"™°, almost surely with respect to the parameter

initialization the Jacobian with respect to the input satisfies

L—1 ng
| (@yal® = [WHulE P TS0 ul )2 +3)

I=1 i=1
wherevectorsu\), 1 = 1,. .., L — 1 are defined recursively as ul) = W(l)u(l*n/HW(Z)u(l*l) || when
W(l)u(l_l) # 0 and 0 otherwise, and u®) = w. The matrices W(l) consist of rows WZ(Z) = Wi(lk)/ €
R™-1 4 =1,...,n, wherek' = argmanE[K]{Wi(’Qw(lfl) + bg’l,)f}, a1 is the output of the lth layer,

and z(0) = .

Proof. TheJacobian Jy () of anetwork A/ (x): R — R™L canbe written as a product of matrices
W(l), Il =1,...,L,depending on the activation region of the input . The matrix W(l) consists of
rows W,El) = Wz(’lk), € R"-1 where k' = argmaxke[K]{Wi(vllz:B(l*l) + bif;} fori =1,...,mn,and
=1 is the Ith layer’s input. For the last layer, which is linear, we have W(L) =W, Thus,

L-1)

— —(1
T (@)u]? = (WO 7 Va2, (4-4)

) || # 0. To see that this holds almost

surely, note that for a fixed unit vector ©(°), the probability of being such that ||W(1) u®| =0

Further we denote u with u(?) and assume ||TV

is 0. This is indeed the case since to satisfy HW( )0 () | = 0, the weights must be a solution to a
system of n; linear equations and this system is regular when u # 0, so the solution set has positive

co-dimension and hence zero measure. Multiplying and dividing (4.4) by HW(l)u(O) 12,

2

oy WO [T
-1 @ W u [T V02

7
(T _ . 2
- HW(L)W(L 1)...W(2)u(1)H HW(l)U(O)HQa

1 Ix (@)ul® = HW(L)W

where u(l) = W(l)u(o)/HW(l)u(o) ||. Repeating this procedure layer-by-layer, we get
L el N L @3)
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By definition of the {5 norm, for any layer [, ||W(l)u(l_1) 12 =33", <Wl(-l), wl=1)2, substituting
this into (l4.§) we get the desired statement. O

4.C.3 Stochastic ordering for || Jy (x)u||?

Now we prove the result for the stochastic ordering of the input-output Jacobian in a finite-width

maxout network.

Theorem 4.1 (Bounds on ||Jy(x)w||?). Consider a maxout network with the settings of Section [g.3,
Assume that the biases are independent of the weights but otherwise initialized using any approach. Let
u € R"™ be a fixed unit vector. Then, almost surely, with respect to the parameter initialization, for any
input into the network x € R™, the following stochastic order bounds hold:
12Lilcm 2 2 12L70m
TTOX"L ll_Il nl;fl,i(Xl,K) <st [ JIn(@)ul|” <st nT)X”L H ";H“ X1,

1

where&,;(x3, K) and Z;;(x3, K ) are respectively the smallest and largest order statistic in a sample of size
K of chi-squared random variables with 1 degree of freedom, independent of each other and of the vectors u

and x.

Proof. From Proposition [4.13, we have the following equality

L—1 ny
[T (@)u* = W uED 2 TS (W3, w02, (4:6)

=1 i=1
where vectors w1 = 0,..., L — 1 are defined recursively as u() = W(Z)u(lfl)/HW(l)u(lfl) I
and u(®) = w. Matrices W(l) consist of rows ng) = VVi(lk)/ € Ru-1 4 =1,...,n;,wherek/ =

argmaxke[K]{Wi(lk):c(lfl) + b%}, and 2~ Y is the Ith layer’s input, (0 = .
We assumed that weights in the last layer are sampled from a Gaussian distribution with mean
_ d .
Dy=|2 £ (1/nz—1)x2, andis

independent of u(“~1). In equation (l4.6), using this observation and then multiplying and dividing

zero and variance 1 /ny_1. Then, by Lemma item 3, ||

the summands by ¢/n;_; and rearranging we obtain

L—1 ny
1 c N—1 =5(1)  (1—1)\2
Ty (z)ul? < i —_— (— i ,u( ) )
T @)™ = X, l|:|1 — ;:1 U )
1 e & —()
=17 -
ng N

Now we focus on y/ny_1/c <WZ(-I), ul=1), since we have assumed that the weights are sam-
@)

pled from a Gaussian distribution with zero mean and variance ¢/n;_1, any weight W, yer j =
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. 0 O . . .
1,...,n;_1, can be written as 4/ C/nlflvz‘,k:,jl where V; f.; 15 @ standard Gaussian random variable.

. l ! 0. . . .
We also write Wz(,k) = 4/ c/nl_lvifk), where szk) is an n;_1-dimensional standard Gaussian ran-

. - ! _
dom vector. Observe that for any k' € [K], <Wi(7k)/,u(l 1)>2 < maxke[K]{WVisk), ul 1)>2} and
<Wi(,lk)’v u(lil)>2 > minke[K]{<Wi(,lk), U(171)>2}. Therefore,

c @ -\ | o g7 -2 o € o -1\
nj_1 krg[lfrgl{<vlk’u > < (Wi s nj—1 krg[a})((] <Vlk’u > .

Notice that vectors u{!~1) are unit vectors by their definition. By Lemma [4.1d, the inner product
of a standard Gaussian vector and a unit vector is a standard Gaussian random variable independent
of the given unit vector.

By definition, a squared standard Gaussian random variable is distributed as x3, a chi-squared
random variable with 1 degree of freedom. Hence, maxcx]{ (VZ(Q, u(l_1)>2} is distributed as the
largest order statistic in a sample of size K of chi-squared random variables with 1 degree of free-
dom. We will denote such arandom variable with ; ; (x1, K). Likewise, minje x{ (VZ(Q ,ul=1D)21
is distributed as the smallest order statistic in a sample of size K of chi-squared random variables
with 1 degree of freedom, denoted with §; ; (3, K).

Combining results for each layer, we obtain the following bounds
1 L—1 c ny (l) 2 d 1 L—1 c nyg
Jyv(@)ul? < =2 — max <V ,u(l*1)> S — 203, K),
ol < o, TS e { (4 SRR EDICHAES

L—-1 ng
L ¢ . O] (171)>2 a1 c U2
TLQX”L knel[lfrﬁl'] {<Vé7k7’u’ - nOXnL H n ;5[,1()(17}{)'

[ Tn ()] >
Then, by Remarks and [4.13, the following stochastic ordering holds

L—-1 n; L—-1 n;

1 c 1 c _

n*OXiL 11 EZ&,Z‘(X%,K) <ot [l In(@)ul® <o ;OX?’LL 11 nflzﬂm(X%aK%
=1 =1 =1 =1

which concludes the proof. 0

4.D Moments of the input-output Jacobian norm || Jy () u||?

In the proof on the bounds of the moments, we use an approach similar to Hanin et al! (2021) for

upper bounding the moments of the chi-squared distribution.

Corollary 4.2 (Bounds on the moments of || Jx(x)u||?). Consider a maxout network with the settings
of Section lg.d. Assume that the biases are independent of the weights but otherwise initialized using any
approach. Let u € R"™ be a fixed unit vector and x € R"™° be any input into the network, Then
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o) %<c8>L—1 < E[[|In(z)ul?] < %w—a

9 L-1

1 1
. 2] « (DL 201 g2L-1) g sl I Il H
(i) Var [||[ Iy (z)u?] < <n0) ¢ (K exp {4< K i nL)} ° >,

=1

t L—1
(i) E [|lIn(@)ul] < (?) (KD exp {ﬂ ( 3 le + ni) } ten,

0 =1
where the expectation is taken with respect to the distribution of the network weights. The constants S and £
depend on K and denote the means of the smallest and the largest order statistic in a sample of K chi-squared
random variables. For K = 2,...,10,8 € [0.02,0.4] and £ € [1.6, 4]. See Table4.d in Section gD for

the exact values.

Proof. We first prove results for the mean, then for the moments of order ¢ > 1, and finish with the

proof for the variance.

Mean Using mutual independence of the variables in the bounds in Theorem [4.1, and that if two
non-negative univariate random variables X and Y are such that X <y Y then E[X"] < E[Y"]

for alln > 1 (Mdller and Stoyan, 2002, Theorem 1.2.12),

L—1 ng L—-1 ny
1 c 1 c _
BRI Sl < Bl < 50e, T1 5 Y B e

where we used &, ; and Z; ; as shorthands for & ;(x?, K) and Z;;(x?, K). Using the formulas for
the largest and the smallest order statistic pdfs from Remark lg.14, the largest order statistic mean

K[> 2\
E[=:] = \/%/0 <erf (\/;>) 22624y = L,

and the smallest order statistic mean equals

00 K-1
E &) = \/%/0 (1 — erf <\/§>> 2 2e /24y = 8.

Here we denoted the right hand-sides with £ and 8, which are constants depending on K, and can

equals

be computed exactly for K = 2and K = 3, and approximately for higher K -s, see Table [4.d. It is
known that E [X% L} = nr. Combining, we get

n _ n —
(e8) T SB[l I (@)ul’] < 2 (el)t
0 no
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Moments of order { > 1 As above, using mutual independence of the variables in the bounds
in Theorem [4.4, and that if two non-negative univariate random variables X and Y are such that
X <4 Y thenE[X"] < E[Y"]foralln > 1 (Miiller and Stoyan, 2002, Theorem 1.2.12),

1 L—1 o t
E[| v (w)ul] <E (nox%;L 1T, Zal,,)
=1 i=1

. (47)
ny, 1N\t 5 £t L-1 e\! n
= (=) (=) | [TI(5) E =P
<no> <nL> ban.) H(”l) Z "
=1 i=1
Upper-bounding the maximum of chi-squared variables with a sum,
c\! n ¢ ! o K ¢ ! ,
<nz> E (Z Eu) ] < (m) E (Z Z(X%)ux) = <nz> E [(XilK) } :

i=1 i=1 k=1
where we used that a sum of n; K chi-squared variables with one degree of freedom is a chi-squared

variable with n; K degrees of freedom. Using the formula for noncentral moments of the chi-squared

distribution and the inequality 1 + = < €7,

<C>tE [(Xg”K)f} = (C)t (mE) (K +2)- - (mK + 2t - 2)

n n
2 % — 2 Loy #2
=Kt 1- (14— (1 ) <Kt V<K —
c +nl + K <c exp ;”ZK <c exp K [

where we used the formula for calculating the sum of consecutive numbers Zf;i i=tt—1)/2.

(&) i) senf )

Combining, we upper bound (.7) with

nr, ¢ (o 1 1
— KD exp {42 —_—F — .
(nt)) () ’ ; mK - ong

Variance Combining the upper bound on the second moment and the lower bound on the mean,

Similarly,

we get the following upper bound on the variance

2 L—1
1 1
2] « (PL) 2(L-1) | g2(L-1) LI I GOV
Var [|| Iy (z)ul]?] < (no c K expy 4 E K + o S

=1
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which concludes the proof. O

Remark 4.14 (Computing the constants). Here we provide the derivations necessary to compute
the constants equal to the moments of the largest and the smallest order statistics appearing in

the results. Firstly, the cdf of the largest order statistic of independent univariate random variables
Y1y .-, Yr withcdf F'(z) and pdf f(x)is

K K
Pr (max{yk} < :c) =Pr <ﬂ (yp < x)) = HPr(yk <z)=(F(z))X,
k=1

ke[K] el

Hence, the pdfis K (F(x))* ! f(z). For the smallest order statistic, the cdf is
K
Pr( min <z)=1- Pr >2)=1—(1-F(x)*.
(imip o) <) =1 TLeeioe = =1~ Fo)

Thus, the pdfis K (1 — F(2))* 7! f(z).

Now we obtain pdfs for the distributions that are used in the results.

Chi-squared distribution The cdf of a chi-squared random variable Xi with £ = 1
degree of freedom is F(z) = (['(k/2))"'v(k/2,2/2) = erf(y/2/2), and the pdf is

f(z) = (220 (k/2))tak/2—1e=2/2 = (27)~1/24=1/2=%/2 Here we used that I'(1/2) = /7
and v(1/2,2/2) = /7 erf(y/x/2). Therefore, the pdf of the largest order statistic in a sample of
K chi-squared random variables with 1 degree of freedom Z; ;(x, K) is

2)" s

The pdf of the smallest order statistic in a sample of K chi-squared random variables with 1 degree

of freedom &, ;(x, K) is
x K=y 1
K(1—erf — — g 2e7 2,
( <\/;>> V2m

Standard Gaussian distribution Recall that the cdf of a standard Gaussian random variable is
F(z) = 1/2(1 + erf(x/+/2)), and the pdfis f(z) = 1/+/27 exp{—22/2}. Then, for the pdf of the

largest order statistic in a sample of K standard Gaussian random variables =; ;(N (0, 1), K') we get

e —— er — e .
2oK-1\/o1 V2
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Table 4.9: Constants £ and § denote the means of the largest and the smallest order statistics in a
sample of size K of chi-squared random variables with 1 degree of freedom. Constant M denotes
the second moment of the largest order statistic in a sample of size K of standard Gaussian random
variables. See Remark for the explanation of how these constants are computed.

MAXOUT RANK L S M

2 1.63662 0.36338 1

3 2.10266 0.1928  1.27566
4 2.47021 0.1207  1.55133
5 2.77375 0.08308 1.80002
6 3.03236 0.06083 2.02174
7 3.25771 0.04655 2.2203
8 3.45743 0.0368  2.39954
9 3.63681 0.02984 2.56262

10 3.79962 0.0247  2.7121

Constants Now we obtain formulas for the constants. For the mean of the smallest order statistic

in a sample of K chi-squared random variables with 1 degree of freedom §; ; (x3, K), we get

S—K/Ooé T—erf( /2 K_l -5d
—mo X €r: 2 [ X.

The mean of the largest order statisticin a sample of K chi-squared random variables with 1 degree

of freedom = ; (X3, K) is

K-1
K & @
L= \/%/0 .’1}'% (erf <\/§>> e 2dx.

The second moment of the largest order statistic in a sample of K standard Gaussian random vari-
ables = ;(N(0,1), K) equals

K & x K-1
Me B [T (1t at ()) 5 dz.
2K-1\/21 /oo < V2

These constants can be evaluated using numerical computation software. The values estimated

for K = 2,...,10 using Mathematica (Wolfram Research, Ind, 2022) are in Table [4.d.

4.E Equality in distribution for the input-output Jacobian norm and

wide network results

Here we prove results from Section [4.3.9. We will use the following theorem from [Anderson (2003).

We reference it here without proof, but remark that it is based on the well-known result that uncor-
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related jointly Gaussian random variables are independent.

Theorem 4.15 (Anderson 2003, Theorem 3.3.1). Suppose X1, ..., X are independent, where X, is
distributed according to N (ftq, ). Let C = (cqp) be an N x N orthogonal matrix. Then Y, =
Zé\;l capX g is distributed according to N (Vq, X3), where v, = Zgzl Capitp, @ = 1,..., N, and
Y1, ..., YN areindependent.

Remark 4.16. We will use Theorem in the following way. Notice that it is possible to consider
a vector v with entries sampled i.i.d. from N (0, 0?) in Theorem and treat entries of v as a set
of 1-dimensional vectors X, ..., X . Then we can obtain that products of the columns of the
orthogonal matrix C and the vector v, Y3 = Zgil Caf3Va, are distributed according to N (0, o)

and are mutually independent.

Theorem 4.3 (Equality in distribution for || Jxr(x)u||?). Consider a maxout network with the settings
of Section [g.d. Let u € R™ be a fived unit vector and x € R™,x # 0 be any input into the network.

Then, almost surely, with respect to the parameter initialization, || J (z)w||? equals in distribution

1 L—1 c ny 9
2 -
;OXRL H 7”71 E (vi \/1 — cos? Vpt=1) y-1) + Z1:(IN(0,1), K) cos Vp(l—l)’u(l—l)) )
=1 =1

where v; and Z;;(N(0,1), K) are independent, v; ~ N(0,1), Z;(N(0,1), K) is the largest
order statistic in a sample of K standard Gaussian random variables. Here Ve ) denotes the
angle berween r(V) = (mgl),...,m,(lll),l) and u = (ugl) qu), 0) in RUFL where
ul) = W(l)u(lfl)/HW(l)u(l’I)H when W 4,0-1) # 0 and 0 otherwise, and u'®) = w. The
0 o W(l) € R™-1, where k' = argmax; 1 {W, km(l D+ bZ k}

matrices W consist of rows W;

Proof. By Proposition |g.1, almost surely with respect to the parameter initialization,

L—1 ng
[T (@)l = [WEED2 T D W, w2, (+:8)

=1 i=1
where vectors ul), | = 0,..., L — 1 are defined recursively as u() = = W1 )/|W 1) gy t=1) I
and ©(©) = w. Matrices W(l) consist of rows ng) = VVi(l,; € Ru-1 4 =1,...,n;,where k' =

argmaxke[K]{Wi(l,gcc(l_l) + bgl;)g}, and (") is the [th layer’s input, () = .
We assumed that weights in the last layer are sampled from a Gaussian distribution with mean
zero and variance 1 /n7,_ 1. Then, by Lemmalg.1d, | IW (B (L= |2 £ i (1/nr—1)x3, andisindepen-

dent of u(L~1). We use this observation in the equation (i4.6), multiply and divide the summands
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in the expression by ¢/n;_1 and rearrange to obtain that

L—1 ny
a 1 9 c -1 77 (1) | (1—1)\2
Jy(z)u? = X —_— (— W." u )
pcter® & D, TT o 3 (M o)
. 1 (4-9)
_ 2 ¢ -1 770 (1—1)42
=1 =1
Wedefiner(=b := (mglfl), ... ,:cg;ll), 1) € Ru-1tlandul=b = (uglfl)7 .. 7(1[1 ?,0)
R™M-1F1 " |lu|| = 1. We append the vectors of biases to the weight matrices and denote obtained

matrices with 20() € R™*(m-1+1) Then (ff.d) equals
ny
-1 1 (l w12

= _ . . .
Now we focus on y/nj_1/c <9ﬂ§ ), ul=D). Since we have assumed that the weights and bi-
ases are sampled from the Gaussian distribution with zero mean and variance ¢/n;_1, any weight
o . . . ) O
Wi,kz,j’ J = 1,...,n;_1 (or bias), can be written as ‘/C/nl—lvz‘,k,j’ where V; jo.j 18 standard Gaus-

sian. Therefore,

ML w0y = @ Yy, (4:0)
where ﬁgl) = mg,)c, € Ru-1tL |/ = argmax, ) 1D 11,; (=Dy1 9} ])C are (nj—1 + 1)-
dimensional standard Gaussian random vectors.

We construct an orthonormal basis B = (by,..., by, ,+1) of R™-111 where we set by =
;(l_l)/H;(l_l) || and choose the other vectors to be unit vectors orthogonal to b;. The change of
basis matrix from the standard basis I to the basis B is given by B”; see, e.g., Anton and Rorres

(@

(2013, Theorem 6.6.4). Then, any row U, ;. an be expressed as
gb — o by b
’i,k - Ckvl 1 + + Ck?,?'ll_l-f—l nl,1+17

where ¢y, j = <‘ﬂz(9€, bj),ij=1,...,m_1+1

The coordinate vector of £~ relative to Bis (||x"V||,0,...,0). Vector u’~1 in B has the
coordinate vector ((u=D by), ..., (u=1) b, 11)). This coordinate vector has norm 1 since the
change of basis between two orthonormal bases does not change the £2 norm; see, e.g., Anton and
Rorres (2013, Theorem 6.3.2).

For the maximum, using the representation of the vectors in the basis B, we get

P L(-1)y O -1y _ -1 — |p(t-1)
@67 = ma {0060 | = max {ena e = 1) max {ea G
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. . <=1
Therefore, in the basis B, Q]Z(» ) has components (maxXe(g] {Ck,1},Ch’ 2, - - - » Ck’ ny_, +1)- By Theo-

rem , forallk =1,...,K,5=1,...,m_1 + 1, the coefficients ¢, ; are mutually independent

standard Gaussian random variables that are also independent of vectors b;,j = 1,...,n;_1, by

Lemma and of u(!~ 1),

np_1+1
(1) — _ _
) = s o) 0000+ v
np_1+1 (4-12)
L 2,(N(0,1), K) D b1y + ST vl b)),
j=2

where = ;(N(0,1), K) is the largest order statistic in a sample of K standard Gaussian ran-
dom variables, and v; ~ N(0,1). Since we have simply written equality in distribution for
maXe(K] {ck1} and ¢ j, the variables Z; ;(N(0,1), K) and v;,j = 2, ..., 11 are also mutually
independent, and independent of vectors b;, j = 1,...,71;_1, and of w" ), In the following we
will use Z; ; as a shorthand for =; ; (N (0, 1), K).

A linear combination Y " ; a;, v; of Gaussian random variables v1, ..., vp, v; ~ N(u;, UJQ-),
j = 1,...,n with coefficients a1, . . . , a,, is distributed according to N (> 1| a;ui;, > iy aZ0?).

Hence, Z?ZZEI—H vj (ul=1), bj) ~ N(0, Z?ZZEH_I (ut=1), b;)?). Since Z;-Ll:aﬁ_l (u=1), bj)?=1-
(u(lfl), b1>2 =1 — cos? Ve(1=1) y(t-1), We get

n_1+1
Z Uj (u(l_l), bj) + El,i <u(l_1), b1>
=2 (4-13)

d -
= \/1 — €082 Yp-1) y(1-1) F E1,i €OS Ye(i-1) y1-1),

where v; ~ N(0,1). Notice that v; \/1 — cos? Yet—1) y—1) and Ey; €08 Yy, 1-1) z-1) are stochas-
tically independent because v; and Z; ; are independent and multiplying random variables by con-

stants does not affect stochastic independence. O

Remark 4.17. The result in Theorem |4.3 also holds when the biases are initialized to zero. The proof
is simplified in this case. There is no need to define additional vectors ! ~1) and u(~1), and when
constructing the basis, the first vector is defined as by := (=1 /||2(=1)||. The rest of the proof

remains the same.

Remark 4.18 (Effects of the width and depth on a maxout network). According to Theorem B, the
behavior of || J/ () u||? in a maxout network depends on the cos Ye-1) y(-1), Which changes as the

network gets wider or deeper. Figure [.8 demonstrates how the width and depth affect || Jy(2)ul|?.
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Width 10 Width 100

-------------------------- N —
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Figure 4.5: The plots show that | cos Ve o | grows with the network depth and eventually con-
verges to 1 for wide networks and maxout rank K > 2. The results were averaged over 1000
parameter initializations, and both weights and biases were sampled from N (0, ¢/fan-in), ¢ =
1/E[(E(N(0,1), K))?], as discussed in Section [1.4. Vectors & and u were sampled from N (0, I).

c=0.3,c< 1/E[Z?] c=1/E[Z?] c=10,c > 1/E[Z?]

1.0 B ——

0.8 0.8 Maxout rank
Eo.e Eo 6 k=2
S S —_ K=3
0.4 0.4

— K=

0.2 0.2 K=5

00 20 40 60 8 100 %% 20 40 e s 100 %% 20 40 e 8 100

Layer Layer Layer

Figure 4.6: The plots show that | cos V() y®) | does not converge to 1 for ¢ < 1/E[=2] and converges
for ¢ > 1/E[Z2]. The network had 100 neurons at each layer, and both weights and biases were

sampled from N (0, ¢/fan-in). The results were averaged over 1000 parameter initializations. Vec-
tors & and u were sampled from N (0, I).

Wide shallow networks Since independent and isotropic random vectors in high-dimensional
spaces tend to be almost orthogonal (Vershynin, 2018, Remark 2.3.5), cos Var(0) 4,(0) Will be close to
0 with high probability for wide networks if the entries of the vectors  and w are i.i.d. standard
Gaussian (or i.i.d. from an isotropic distribution). Hence, we expect that the cosine will be around

zero for the earlier layers of wide networks and individual units will behave more as the squared

standard Gaussians.

Wide deep networks Consider wide and deep networks, where the layers ! = 0,...,L — 1 are
approximately of the same width n;;, ~ ny,,l1,lo = 0,...,L — 1. Assume thatc = 1/M =
1/E[(E(N(0,1), K))?]. We will demonstrate that under these conditions. | cos Ve | A 1for
the later layers for 2 < K < 100. Thus, individual units behave as the squared largest order statis-
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(M0, 1),K))?]

2

E(

2 20 40 60 80 100
sample size (maxout rank) K

Figure 4.7: Second moment of Z(NN (0, 1), K) for different sample sizes K. It increases with K for
any K,2 < K < 100,and E[(Z(N(0,1), K))?] > 1for K > 2.

tics. To see this, we need to estimate cos Ve u®) from Theorem @, which is defined as

os o _ D) 0 ul) ms (), 50)
c — _ _ _
Ve O = Pru ||X(l)||||u(l)|| H;(l)HHﬁ(l)” (\/%H;(l H)( — 1” (l)||>

0

where we denoted cos Y1) 1) With ppy, and with 1), u® before the normalization.

Firstly, for x() we get

ny 2
ety @2 2 L W) 41
02 = 2 (Zl (e (et 1Y)
2
1 ny (l—l) n)—
_ e [ L g ¥ 4=t .
cllx I " ZZ: (;523% { z,ka(l—l)H clle=D|12n, (4-14)

=1

a0 (L3, ¢ M
g =TT 2y )

where in the second line we used thatQU = \/c/n— %Z 0T, k,] ~ N(0,1),5=1,...,n7-1.

In the third line, 5 ; 4 =E(N (0 1), K)is the largest order statistic in a sample of K standard Gaus-

Il

sians, since by Lemma [¢.1d, Q]Z k:; (= 1)/”F(l_l) || are mutually independent standard Gaussian ran-
dom variables. When the network width islarge, 1/n; > it :l ; approximates the second moment
of the largest order statistic, and 7;_1 /n; ~ 1 when the layer widths are approximately the same.

Then

ni—1 _ —_ 1
PO el P (B 2] + s )
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Wwidth 1 Width 2 Wwidth 5 width 20 Wwidth 50
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Figure 4.8: Shown is the expectation value of the square norm of the directional derivative of the
input-output map of a maxout network for a fixed random direction with respect to the weights,
plotted as a function of the input. Weights and biases are sampled from N (0, 1/fan-in), and biases
are zero. Inputs are standard Gaussian vectors. Vector u is a one-hot vector with 1 at a random
position, and it is the same for one setup. We sampled 1000 inputs and 1000 initializations for each
input. The left end corresponds to the second moment of the Gaussian distribution, and the right
end to the second moment of the largest order statistic. Observe that for wide and deep networks,
the mean is closer to the second moment of the largest order statistic.

Now we will show that 1/”;“71) H2

ni—1 2
(=12 — (1) (1-2)
LA D (mex (il 2}) 41

~ 0. Firstly, by the same reasoning as above,

d Al 1 & n G cn 1 X
-1 —_ -1 —_ -1 —_

= ||?(0)”2TH; ~12,1+"'+CQT H — ':'lz,i+ R 512,1—1-1.

SR R | =3 ;2227 =1 (=2 H-155
Since we assumed that the layer widths are large and approximately the same,

-1 1 e j
IV & O (EIE?) T+ + BE + 1= ¢ Q) (EBE?]) T + ) (BIE?)
j=0
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Using the assumption that ¢ = 1/E[Z2], we obtain that ||x"D||2 ~ ||z||2 + (I — 1) and goes to
infinity with the network depth. Hence, 1/||x~"||? ~ 0 and

ni—1 1— —_
Hzc 2~ el V|PE [22].

Now consider 1il"). Using the reasoning from Theorem 4.3, see equations (f4.13) and (-) al) 4
c/nl,l(EMpz(fu_l) +viy/1— (pz(flu 1)) ),i=1,...,n;,v; ~ N(0,1). Then in a wide network

2
_ cn - (I— l
O ~ ﬁE (:pﬁu Ry - (Pz(tu 1)) ) : (4.15)

Note that the random variable = in equations ( and ( is the same based on the derivations
in Theorem [4.3, to see this, compare equations (4.11) and ((.12).

Similarly, for the dot product (x(l) , ﬁ(l)> in a wide network we obtain that

_ _ 2
:(apga D g oy - () )]

Hence, we have the following recursive map for p( )

_ _ 2
S (Epffu Doy 1 (o) )]

2
_ _ 2
E[=2 |E (Epffu Y4 1—(p§lu ”))

-1 —_
1 pz(cu )E[:‘2]
=2

VEET J6) - +1

where we used independence of v and Z, see Theorem 4.4, and that E[v] = 0 and E[v?] = 1. This

map has fixed points p* = =1, which can be confirmed by direct calculation To check if these fixed
points are stable, we need to consider the values of the derivative 8/) / apx

0 w0y ~ [ g

ni—1

E

at them. We obtain
Ip =23 (D)2 =2 -
iy = B () @R -D+1)
Pru

N|w

When pz(clu_l) +1 this partial derivative equals 1/E[Z2] < 1for K > 2, since E[Z?] > 1,
see Table B for K = 2,...,10 and Figure 4.4 for K = 2,...,100. Hence, the fixed points are
stable (Strogatz, 2018, Chapter 10.1). Note that for K = 2, 1/E[Z?]

= 1, and this analysis is in-
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conclusive. Therefore, if the network parameters are sampled from N(0,¢/n;—1),¢c = 1/M =
1/E[Z(N(0,1), K)?], we expect that | cos Y | A 1 for the later layers of deep networks and
individual units will behave more as the squared largest order statistics. Figure |4.d demonstrates
convergence of | cos Ve®) 1 | to 1 with the depth for wide networks, and Figure 4.6 shows that there

is no convergence for ¢ < 1/E[Z?] and that the cosine still converges for ¢ > 1/E[Z2].

Remark 4.19 (Expectation of || J ()% in a wide and deep network). According to Remark .18,
for deep and wide networks, we can expect that | cos Vp=1) (1-1) | =~ lif ¢ = 1/M, which allows

obtaining an approximate equality for the expectation of ||.Jy (2 )u||?. Hence, using Theorem [s.3,

L-1 n;
1 c _
[T (@)ul|® ~ ;OXZL 11 o > (ELi(N(0,1), K))*. (416)
=1 i=1

Then, using mutual independence of the variables in equation (j.16),
1 L—-1 c ng
- 2
B[l v @l ~ - EDG,] [T D0 E @i, K)7).
=1 1=1

since M = E[(Z;;(N(0,1), K))?], see Table 4.9, and ¢ = 1/M, we get

nr _ nr,
Efl Iy (@)ul? ~ "L ()it = M.
no no

Remark 4.20 (Lower bound on the moments in a wide and deep network). Using (4.16) and taking

into account the mutual independence of the variables,

L—1 ny
1 c —
E[| Iy (a)ul”] ~ E (noxiL I, > G )
=1 =1

)
-() ) el I () 2

Z(El,z-(N(o,l),K))Q) ]
=1

1
> <7jf) (nl)m: (2,)'] jH (m) (ZE B0 1>,K>>2}>t,

(4.17)
where in the last inequality, we used linearity of expectation and Jensen’s inequality since taking

the tth power for ¢ > 1 is a convex function for non-negative arguments. Using the formula for

noncentral moments of the chi-squared distribution and the inequality lnz > 1 — 1/z,Vz > 0,

139



Chapter 4. Expected gradients of maxout networks and consequences to parameter initialization

meaning thatz = exp{lnz} > exp{l — 1/z}, we get
(L) E[0)]=(5) w2 rz-2 =] (14 2)

t—1 )
21 t—1
o5 () Lo ).

where in the last inequality, we used that 2i /(ny, + 2i) > 2/(ng, +2) > 1/(2np) foralli,ng, > 1.
Using that E[(Z;,;(N (0, 1), K))?] = M, see Table j4.d, and combing this with (4.17) and (4.18),

t
Ell (el 2 (2) e { 52} (20740, (419
no 2ng,

The bound in (4.1d) can be tightened if a tighter lower bound on the moments of the sum of the
squared largest order statistics in a sample of K standard Gaussians is known. To derive a lower
bound on the moments ¢t > 2 for the general case in Corollary [4.d, it is necessary to obtain a non-
trivial lower bound on the moments of the sum of the smallest order statistics in a sample of K

chi-squared random variables with 1 degree of freedom.

4.F Activation length

Here we prove the results from Subsection [4.3.7. Figure [4.d demonstrates a close match between the

estimated normalized activation length and the behavior predicted in Corollary and @

Corollary 4.21 (Distribution of the normalized activation length). Consider a maxout network with

the settings of Section[g.3. Then, almost surely with respect to the parameter initialization, for any input into
. . . / . . . . .

thenetworkx € R™ andl’ = 1,..., L —1, thenormalized activation length AW s equal in distribution

to

l/ ny

14 ny 4
RS <n,§ EL (N0, 1>,K>2) || ( > Zaz,z-<N<0,1>7K>2> ,
— = |

=1 - \"Mio

where t(0) := (xy,..., @p,,1) € R™TL E1i(N(0,1), K) is the largest order statistic in a sample of
K standard Gaussian random variables, and =; ;(N (0, 1), K') are stochastically independent. Notice that

variables Z; ;(N (0, 1), K') with the same indices are the same random variables.

Proof. Define x() = (T1,...,2n,,1) € R™+1, Append the bias columns to the weight matri-
ces and denote obtained matrices with 20() € R™*(m-1+1) penote QB%, € Ru-1+l /=

argmaxy,c  { (W), #¢~1) }, with 2, . Under this notation, [lf®[2 = (2|2 + 1), [|2V]| =

)
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15

= —— Actual value
= o 10/ —=- Equality in distribution
05 Formula
N—
—=c 5
©

o
Os 0
25

@]

©_5

5 10 15 20 25 30 35 40
Layer

Figure 4.9: Comparison of the normalized activation length with the equality in distribution result
from Corollary and the formula for the mean from Corollaryly.g. Plotted are means and stds esti-
mated with respect to the distribution of parameters / random variables Z; ; (N (0, 1), K) averaged
over 100, 000 initializations, and a numerically evaluated formula for the mean from Corollary |¢.d.
All layers had 10 neurons. The lines for the mean and areas for the std overlap. Note that there is no
std for the formula in the plot.

257D Then [|2®)||? equals

2
/ / (l/_l)
/ ——(1 ’_ =) r r_
J2 )2 = s ”H?—Hw( | 1P
2
£=D) , (-
_ R Frl-n ('=2) 2
‘Hm 7] Hm ooy | I
1 2 I I (l—l) 2
== I “H *Z H e |

where we multiplied and divided ||®(l);(l_1) |2 by |[|z~1)||? at each step. Using the approach from

Theorem |4.3, more specifically equations (4.1d), (4.13) and (4.13), with ul = ;(l)/H;(l) ||, implying
that cos Ve u® = 1,

ni—

v ny v v n
/ 1 / d 1 c 1 c
AW — 22 £ 1500) 12 ” E:EQ Z H =2
n HCB || ||; ” ny H 1 — 1K) ny : E 1K)

I i1 =2 | 1= =1
v n v I n
1 c 1 c
0))12 =2 =2
= =] n*” n*E Zii +§ . || EE il |
05\ iz j=2 | TS NS

where Z;; = Z;;(IN(0,1), K) is the largest order statistic in a sample of K standard Gaussian

random variables, and stochastic independence of variables Z; ; follows from Theorem L. O
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Corollary [4.d (Moments of the activation length). Consider a maxout network with the settings of Sec-
tionlg.d. Let & € R™ be any input into the network. Then, for the moments of the normalized activation
length, the following results hold.

Mean:

l

B [40] =l (@) +Z(nj (@07,

J=

Variance:

a0 < 2O g g [ 4
Var —_— 7.
”0 m K

Moments of the ordert > 2:

U ’ U
K t(l —]+1) t2
+ U —-1)t (e ex — ,
e - (e
¢ (0)12¢ Y (et =i+
eN'| < 1#7] t (c
E [(A )] > (M) +;n§_1 .

where expectation is taken with respect to the distribution of the network weights and biases, and M is a con-

stant depending on K that can be computed approximately, see Tablely.g for the values for K = 2, ..., 10.

Proof. Mean Taking expectation in Corollary and using independence of Z; ;(N (0, 1), K),

E[AU’)}:H H2 (M)’ +Z<

where M is the second moment of = ;(N (0, 1), K), see Table [4.d for its values for K =2, ..., 10.
Moments of the order t > 2 Using Corollary |s.21, we get

Y
E[(Am”
Do v ) I AR ) ¢ (4.21)
e | (el (s 3=) S AT (=) |) |

ni_
1=1 i=1 j=2 | TS i=1

J’“) , (4.20)

Upper bound  First, we derive an upper bound on (.21). Notice that all arguments in (jg.21) are

., . — l . . .
positive except for a zero measure set of =; ; € R21=1", According to the power mean inequality,
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forany x1,...,7, € R,21,...,7, > Oandanyt € Rt > 1, (21 + -+ + z,)t < ni7 (a2l +
-+ z!). Using the power mean inequality first on the whole expression and then on the second

summand,

U ny

=1 i=1
t (4:22)

Using independence of = ;, ( equals

4 ny t
1 O L .
2 [T &> =
=1 i=1

t t
Ct
e

U ny
t
mi1ss

+ U — tlz

)

Upper-bounding the largest order statistic with the sum of squared standard Gaussian random vari-

ables, we getthat y ", :l ; Xn - Hence,

E [(A(l’))t] < 9t-1 ”?nOHQt ll—/Il (%E [(Xi,K)tD
Far- S

(4-23)

LT (G [W)])

1lj

Using the formula for noncentral moments of the chi-squared distributionand 1+z < e*,Vx €
R,
¢ ¢

Cc t &
e (0Gx)"] = o (I (K +2) - (I 428 =2

t—1
2 2 — 2 2i 12
=Kt 1 (1+—)--- (1 < dK? E: <Kt
c +nl K + K <c exp K c exp an

=0

where we used the formula for calculating the sum of consecutive numbers Zf;i i=tt—1)/2.
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Using this result in (.29), we get the final upper bound

N\t o2t )
E |:<A(l)) :| S 2t—1||xntH Ctl Ktl exp{z ntl(}
0 l

Lower bound Using that arguments in (l4.21) are non-negative and t > 1, we can lower bound

the power of the sum with the sum of the powers and get,

14 ny t ¢ n; t
[ c! ¢ =
el | | =22 I DW= +Z H SE N> =
Mo S\ i=1 n -1\ i=1
RIS t
> H Z E[= Z Ly (e o Z E[= :
no TL —1 I=j l
where we used the linearity of expectation in both expressions and Jensen’s inequality in the last
line. Using that E[(Z; ;(N (0, 1), K))?] = M, see Table 4., we get

‘Qt v M)t —j+1)

E[(A(l’))] ”ant M + Z (c " _ (4.24)

0 =2

Variance We can use an upper bound on the second moment as an upper bound on the variance.

O

Remark 4.22 (Zero bias). Similar results can be obtained for the zero bias case and would result
in the same bounds without the second summand. For the proof one would work directly with the

vectors (1), without defining the vectors x(Y), and to obtain the equality in distribution one would
use Remark [g.17.

4.G Expected number of linear regions

Here we prove the result from Section [4.5.1.

Corollary 4.6 (Value for Cyyaq). Consider a maxout network with the settings of Section lg.3. Assume

that the biases are independent of the weights but otherwise initialized using any approach. Consider the
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pre-activation feature (., j, of aunitz = 1,..., N. Then, foranyt € N,

1 ) ) L-1

(mgﬂgo E [I!V@,k(:cﬂt}) " < ng * max {1.(cK) 7 exp {; (; n,lK + 1) } :
Proof. Distribution of V(; x is the same as the distribution of the gradient with respect to the net-
work input VA (z) in a maxout network that has a single linear output unit and L = () layers,
where [(2) is the depth of a unit z. Therefore, we will consider (sup,cgno E[|| VN (2)]|21) 12,
Notice that sincenj = 1, VN (z) = J/\7(a:)T = Jﬁ(az)Tu for a 1-dimensional vector u = (1).

Hence,

IVMi(@)l| = sup [ Tg(@) ull = | T5(@)" ], (4-25)

lu||=1,ucR"L

where the matrix norm is the spectral norm. Using that a matrix and its transpose have the same

spectral norm, (i4.29) equals

@)= sup [[Jg(@)ul.
Therefore, we need to upper bound

lul|=1,ucR™0
1\
( sup E !( sup |]J/\7(:1:)u||> )
xER™0 lul|=1,ucR"0

2t
< supE( sup ||Jﬁ<m>u|r> ,

ZER™0 | =1,ueRmo

where we used Jensen’s inequality.
Now we can use an upper bound on E[||J () u||*'] from Corollary L3, which holds for any
x,u € R™, ||u|| = 1, and thus holds for the suprema. Recalling that n; = 1, we get

1\ - L1y
E [||J = (x)ul?] < <> KD exp {12 —+1
Mgtanul] < (o) RV ep i |3 o0
Hence,
27 3¢ —3 L1 t & 1
(IE [HJK/@U)UH ]) <ny® (cK) 2 exp 3 l_lnl—K+1
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Taking the maximum over L € {1,..., L}, the final upper bound is
L-1
_1 L— t 1
ng 2 max{l, (CK)TI} exp {2 (; i + 1) } .

O

Now we provide an updated upper bound on the number of r-partial activation regions from
Tseran and Montufar (2021, Theorem 9). In this bound, the case » = 0 corresponds to the num-
ber of linear regions. For a detailed discussion of the activation regions of maxout networks and
their differences from linear regions, see T'seran and Montufar (2021). Since the proof of Tseran and

Montifar (2021, Theorem 9) only uses Cgraq for £ < ng, we obtain the following statement.

Theorem 4.23 (Upper bound on the expected number of partial activation regions). Consider a max-
out network with the settings of Section .4 with N maxout units. Assume that the biases are independent

of the weights and initialized so that:

1. Every collection of biases has a conditional density with respect to Lebesgue measure given the values of

all other weights and biases.

2. There exists Chias > 0 so that for any pre-activation features (1, . . . , (¢ from any neurons, the condi-

tional density of their biases py, .. p, given all the other weights and biases satisfies

t
SUp Py, by (01, -+, bt) < Chgs
b1,...,bt€R

Fixr € {0,...,no}. Let Cgraa = ng /* max{1, (cK) =D/} exp{ng/2(X L5 1/(mK) + 1)}
andT = 25Cgrad0hias. Then, there exists 09 < 1/(2CgradChias) such that for all cubes C° C R™ with
side length >  we have

(YK, N <ng

[E[# r-partial activation regions of N in C| 2r
vol(C ~ | (@KN)" (k)
( ) (2K)Tn02! 0 ) N > no

Here the expectation is taken with respect to the distribution of weights and biases in N. Of particular interest
is the case r = (0, which corresponds to the number of linear regions.
4.H Expected curve length distortion

In this section, we prove the result from Section [4.5.3.
Let M be a smooth 1-dimensional curve in R™. Fix a smooth unit speed parameterization of

M = ~([0,1]) withy : R — R"™,~v(7) = (71(7), - . ., Yno (T))- Then, parametrization of the curve
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N (M) is given by amapping I := N o7, T : R — R™L. Thus, the length of (M) is

1
len(A'(M)) = /O (7))l dr

Notice that the input-output Jacobian of maxout networks is well defined almost everywhere
because for any neuron, using that the biases are independent from weights, and the weights
SIIRT . . . l _ l
are initialized from a continuous distribution, P(k’ = argmaxkE[K]{Wi(’k)m(l D 4+ bg%}, k' =
argmaxke[K]{Wi(’lk):c(lfl) + bg,)c}) =0,i=1,...,np_1. Hence, I (7) = Jrr(v(7))¥/(7), where
we used the chain rule, and we can employ the following lemma from Hanin et al} (2021). We state

it here without proof which uses Tonelli’s theorem, power mean inequality and chain rule.

Lemma 4.24 (Connection between the length of the curve and ||Jar(x)u||, Hanin et ali 2021,

Lemma C.1). Forany integert > 0,

E [len(V (M))] < /0 E [I1Ix ((r) (9)IIF] dr = E [|Ix (@)ull]

where u € R™ is a unit vector.
Now we are ready to proof Corollary [4.7.

Corollary 4.7 (Expected curve length distortion). Consider a maxout network with the settings of Sec-
tionlg.d. Assume that the biases are independent of the weights but otherwise initialized using any approach.
Let M be a smooth 1-dimensional curve of unit length in R™0. Then, the following upper bounds on the mo-

ments of len(N (M)) hold:

E [len(N(M))] < (%); (L),

Var [len(NV(M))] < E(CL)L_la

. nr, 3 HL-1) 2 [ 1
s (2 o4 (£ )}

where L is a constant depending on K, see Table ly.d in Section [g.D for values for K = 2. . . ., 10.

Proof. By Lemma [4.24),

E [len(V(M))!] < E [[[Jx(@)ult] < (E [Ty (2)u]?])?

where we used Jensen’s inequality to obtain the last upper bound. Hence, using Corollary [g.d, we

get the following upper bounds on the moments on the length of the curve.
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Mean

Variance
var [len(AV'(M))] < E [len(NV'(M))?] < “£(c)"".

Moments of the ordert > 3

1 3 t(L—1 2 [L-1
E [len(N(M))] < (E [[[Jy(z)u|?])? < <nL> (cK)<2>exp{2< ! +1>}.

4.1 NTK

Here we prove the results from Section [4.5.3.

Corollary 4.9 (On-diagonal NTK). Consider a maxout network with the settings of Section lg.3. Assume
that ny, = 1 and that the biases are initialized to zero and are not trained. Assume that S < ¢ < L, where

the constants S, £ are as specified in Tablely.d. Then,

L—2 L—2 L—1
1O p < Bl @) < 2O p
n, no
L—1
2 a2 le* 4
E[Kx(z, %)% < 2P Py (cK) - > +4%,
ng = an

where P = Zl o, Py = Zleo nyny_1, and M is as specified in Table ly.d.
Proof. Under the assumption that biases are not trained, on-diagonal NTK of a maxout network is

2
n—1

Sy (-2

{
1 k=1 j5=1 aWzk)

ny

iB

L
=1 1=

Since in maxout network for all k-s except k = k' = argmax;.c g {Wl(ylk) (=1 4 b } the deriva-

tives with respect to the weights and biases are zero, on-diagonal NTK equals

2
L n; -1
=1 i=1 j=1 aWZk/
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Notice that since we assumed a continuous distribution over the network weights and the biases are

zero, the partial derivatives are defined everywhere except for the set of measure zero.

PartI. Kernel mean E[Kzr(x,x)] Firstly, using the chain rule, a partial derivative with respect

to the network weight is

8/(\{) (z) = 8/\(?) (w)w(l D= Jy(@ (l))eiwﬁl_l).
8Wi,k’,j ox
Recall that we assumed n;, = 1. Therefore, we need to consider (6N(m)5Wi(l),j)2 =

| T ()| ( (= 1)) where u = e;. Combining Theorem [4.] and Corollary in com-
bination with Remark for the zero-bias case and using the independence of the random

variables in the expressions,

(4.26)

-1 nj
mwjjmjzﬂmmnm),

j=1 J =1

where we treat the (I — 1)th layer asif it has one unit when we use the normalized activation length
result. Then, using Corollaries 4.2 and [4.4,

—1)\ 2
E [‘JN(m(Z))u‘Z <x§ 1)) ] < H!: H2 o LL l— 1Ml 1

Taking the sum, we get

2
np—

;-

1
ll’Ll]laW

CL 2 (CL L72ML71
SZZZWV MHW%MW—L——R

no

Mh

E[Kn (x, )] = =E

where P = Zf;ol n; denotes the number of neurons in the network up to the last layer, but includ-

ing the input neurons. Here we used that for ' > 2, both £, M > 1, see Table ls.d. Similarly,

W, 20 L—i—1ngl—1 yp2(c8)F2
E[Kw] > E E E 129 5 M > 2O e P.
=1 i=1 j=1

Here we used thatfor K > 2,8 < 1and M > 1, see Table @
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Part IL. Second moment E[ Ko/ (z, 2)?] Using equation (.26) with Corollaries [.4 and [1.d,

4
ON Y
Bl | 2@ ) | = |1l ()]
oW, ik
2
L—-1 c n;
<s0 E *X%L - Z E]J(X%a K) (427)
n tLn, 4
j=l =1
2
1 53 c ¥ 9
)12 il =
S | B SEHAURRG
=1 =1
- ’I’Ll2 ng = an ' '

Notice that all summands are non-negative. Then, using AM-QM inequality,

2\ 2
n; Ni—1

E[Ky(z,2)’] = E Z > (x)

lllljlaW

4

=1 i=1 j=1 7j=1
L—-1
il 4
< 2PPy(cK — 44
where Py = ZlL:O n;n;_1 denotes the number of all weights in the network. ]

4.] Experiment details and additional experiments

4.J1 Experiments with SGD and Adam from Section [4.6

In this subsection, we provide more details on the experiments presented in Section [4.6. The imple-
mentation of the key routines is available at https://github.com/hanna-tseran/maxout_
expected_gradients. Experiments were implemented in Python using TensorFlow (Martin
Abadi et all, po1g), numpy (Harris et all, 2020) and mpi4py (Dalcin et all, 2o11). The plots were
created using matplotlib (Hunter, 2oo7). We conducted all training experiments from Section 4.4

on a GPU cluster with nodes having 4 Nvidia A1oo GPUs with 40 GB of memory. The most extensive
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experiments were running for one day on one GPU. Experiment in Figure |4.d was run on a CPU
cluster that uses Intel Xeon IceLakeSP processors (Platinum 8360Y) with 72 cores per node and
256 GB RAM. All other experiments were executed on the laptop ThinkPad T470 with Intel Core
i5-7200U CPU with 16 GB RAM.

Training experiments Now we discuss the training experiments. We use MNIST (LeCun and
Cortes, 2010), Iris (Fishet, 1936), Fashion MNIST (Xiao et all, 2o17), SVHN (Netzer et all, 2011), CIFAR-
10 and CIFAR-100 datasets (Krizhevsky et al), oog). All maxout networks have the maxout rank
K = 5. Weights are sampled from N (0, ¢/fan-in) in fully-connected networks and N (0, ¢/(k? -
fan-in)), where k is the kernel size, in CNNs. The biases are initialized to zero. ReLU networks are
initialized using He approach (He et al), o15), meaning that ¢ = 2. All results are averaged over 4
runs. We do not use any weight normalization techniques, such as batch normalization (loffe and
Szegedy), 2o15). We performed the dataset split into training, validation and test dataset and report
the accuracy on the test set, while the validation set was used only for picking the hyper-parameters
and was not used in training. The mini-batch size in all experiments is 32. The number of training
epochs was picked by observing the training set loss and choosing the number of epochs for which
the loss has converged. The exception is the SVHN dataset, for which we observe the double descent

phenomenon and stop training after 150 epochs.

Network architecture Fully connected networks have 21 layers. Specifically, their architecture is
[6xfc64, 5xfc32, 5xfcl6, 5xfc8, out],

where “5 xfc64” means that there are 5 fully-connected layers with 64 neurons, and “out” stands for
the output layer that has the number of neurons equal to the number of classes in a dataset. CNNs
have a VGG-19-like architecture (Simonyan and Zisserman, 2015) with 20 or 16 layers, depending

the input size. The 20-layer architecture is

[2x conv64, mp, 2Xconv128, mp, 4Xconv256, mp, 4xconv512, mp, 4xconv512, mp,

2% £c4096, £c1000, out],

where “conv64” stands for a convolutional layer with 64 neurons and “mp” for a max-pooling layer.
The kernel size in all convolutional layers is 3 X 3. Max-pooling uses 2 X 2 pooling windows with
stride 2. Such architecture is used for datasets with the images that have the side length greater or
equal to 32: CIFAR-10, CIFAR-100 and SVHN. The 16-layer architecture is used for images with the

smaller image size: MNIST and Fashion MNIST. This architecture does not have the last convolu-
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tional block of the 20-layer version. Concretely, it has the following layers:

[2x conv64, mp, 2Xconvl28, mp, 4Xconv256, mp, 4xconvh12, mp, 2x£c4096, fc1000, out],

Max-pooling initialization To account for the maximum in max-pooling layers, a maxout layer
appearing after a max-pooling layer is initialized as if its maxout rank was K x m?, where m? is the
max-pooling window size. The reason for this is that the outputs of a computational block consist-
ing of a max-pooling window and a maxout layer are taking maxima over ' x m? linear functions,
max{Wjmax{x1,..., @2} + b1,..., Wrgmax{wy,...,x,2} + bx} = max{f1,..., fxm2},
where the f; are K'm? affine functions. Therefore, we initialize the layers that follow max-pooling
layers using the criterion for maxout rank m? x K instead of K. In our experiments, K = 5,m = 2,
and m? x K = 20. Hence, for such layers, we use the constantc¢ = 1/M = 0.26573, where M is
computed for ' = 20 using the formula from Remark in Section 4.D. All other layers that do not
follow max-pooling layers are initialized as suggested in Section [4.4. We observe that max-pooling

initialization often leads to slightly higher accuracy.

Data augmentation There is no data augmentation for fully connected networks. For convolu-
tional networks, for MNIST, Fashion MNIST and SVHN datasets we perform random translation, ro-
tation and zoom of the input images. For CIFAR-10 and CIFAR-100, we additionally apply a random

horizontal flip.

Learning rate decay In all experiments, we use the learning rate decay and choose the optimal
initial learning rate for all network and initialization types based on their accuracy on the validation
dataset using grid search. The learning rate was halved every nth epoch. For SVHN, n = 10, and for

all other datasets, n = 100.

SGD withmomentum We use SGD with Nesterov momentum, with the momentum value of 0.9.

Specific dataset settings are the following.

e MNIST (fully-connected networks). Networks are trained for 600 epochs. The learning rate is
halved every 100 epochs. Learning rates: maxout networks with maxoutinitialization: 0.002,
maxout networks with ¢ = 0.1: 0.002, maxout networks with ¢ = 2: 2 x 10~7, ReLU net-
works: 0.002.

e Iris. Networks are trained for 500 epochs. The learning rate is halved every 100 epochs. Learn-
ing rates: maxout networks with maxout initialization: 0.01, maxout networks with ¢ = 0.1:

0.01, maxout networks with ¢ = 2: 4 x 108, ReLU networks: 0.005.

e MNIST (convolutional networks). Networks are trained for 800 epochs. The learning rate is

halved every 100 epochs. Learning rates: maxout networks with maxout initialization: 0.009,
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maxout networks with max-pooling initialization: 0.009, maxout networks with ¢ = 0.1:

0.009, maxout networks with ¢ = 2: 8 x 1076, ReLU networks: 0.01.

o Fashion MNIST. Networks are trained for 800 epochs. The learning rate is halved every 100
epochs. Learning rates: maxout networks with maxout initialization: 0.004, maxout net-
works with max-pooling initialization: 0.006, maxout networks with ¢ = 0.1: 0.4, maxout

networks with ¢ = 2: 5 x 1075, ReLU networks: 0.01.

e CIFAR-10. Networks are trained for 1000 epochs. The learning rate is halved every 100 epochs.
Learning rates: maxout networks with maxout initialization: 0.004, maxout networks with
max-pooling initialization: 0.005, maxout networks with ¢ = 0.1: 0.5, maxout networks
with ¢ = 2: 8 x 107%, ReLU networks: 0.009.

e CIFAR-100. Networks are trained for 1000 epochs. The learning rate is halved every 100
epochs. Learning rates: maxout networks with maxout initialization: 0.002, maxout
networks with max-pooling initialization: 0.002, maxout networks with ¢ = 0.1: 0.002,

maxout networks with ¢ = 2: 8 x 107°, ReLU networks: 0.006.

e SVHN. Networks are trained for 150 epochs. The learning rate is halved every 10 epochs.
Learning rates: maxout networks with maxout initialization: 0.005, maxout networks with
max-pooling initialization: 0.005, maxout networks with ¢ = 0.1: 0.005, maxout networks
with ¢ = 2: 7 x 107°, ReLU networks: 0.005.

Adam We use Adam optimizer Kingma and Ba (2015) with default TensorFlow parameters 3; =

0.9, B2 = 0.999. Specific dataset settings are the following.

e MNIST (fully-connected networks). Networks are trained for 600 epochs. The learning rate
is halved every 100 epochs. Learning rates: maxout networks with maxout initialization:
0.0008, maxout networks with ¢ = 2: 0.0007, ReLU networks: 0.0008.

e MNIST (convolutional networks). Networks are trained for 800 epochs. The learning rate
is halved every 100 epochs. Learning rates: maxout networks with maxout initialization:
0.0001, maxout networks with max-pooling initialization: 0.00006, maxout networks with
¢ = 2:0.00004, ReLU networks: 0.00009.

e Fashion MNIST. Networks are trained for 1000 epochs. The learning rate is halved every 100
epochs. Learning rates: maxout networks with maxout initialization: 0.00007, maxout net-
works with max-pooling initialization: 0.00008, maxout networks with ¢ = 2: 0.00005,
ReLU networks: 0.0002.

o CIFAR-10. Networks are trained for 1000 epochs. The learning rate is halved every 100 epochs.

Learning rates: maxout networks with maxoutinitialization: 0.00009, maxout networks with

153



Chapter 4. Expected gradients of maxout networks and consequences to parameter initialization

Table 4.10: Ablation study of the value of c. Reported is accuracy on the test set for maxout networks
with maxout rank K = 5 trained using SGD with Nesterov momentum. Observe that the optimal
value of cis close to ¢ = 0.55555 which is suggested in Section [4.4.

FULLY-CONNECTED CONVOLUTIONAL
VALUE OF ¢
) Fashion
MNIST Iris MNIST CIFAR-10 CIFAR-100
MNIST
0.01 11.35:i:0.00 30:&0.00 11'35:|:0.00 10:|:0.00 1:|:0.00 10:|:0.00
0.05 11_35i0.00 30i0.00 11'35i0.00 10i0‘00 1i0.00 10i0‘00
0.07 11'35:i:0.00 31.67i2’89 11'35:&0.00 10:|:0.00 1:|:0.00 10:|:0.00
0.1 11.35i0.00 30i0.00 11'35i0.00 10i0.00 1i0.00 10i0.00
0.2 11_35:&0.00 30:&0.00 99.56i0'03 10:&0.00 1:|:0.00 9321:&0.11

0.3  97.63%016  60.83%30-86 99.555002 90, 97=011  64.7120-25 93 41=0-11
04  97.89%012 g5EI06T 99 61003 g1 15007 g 9033 g3 91011
0.5  97.82%009 92 5+144 g9 56005 9] 33013 65 48043 93 5015
0.55555 ~ 97.92%0-18 9083363 99 57+007 g1 4#0-22 65 .38+0:32 93 57+0.08
0.6  97.77%017 90.83%144 99 590002 91 69+0-25 65 58024 93 54+0-13
0.7  97.91¥011  got000 54 694489 50 g3+40-83  g6,2610-42 93,62+0-23

0.8 75.82i38'12 30:&0.00 9.8i0'00 10:|:0.00 1:|:0.00 72.66i36'17
0.9 75_94i38‘18 30i0.00 9.8i0'00 10i0‘00 1i0.00 10i0‘00
1 97.89i0’10 30:&0.00 9.8i0'00 10:|:0.00 1:|:0.00 10:|:0.00
1.5 9.8i0‘00 30i0.00 9.8i0'00 10i0.00 1i0.00 10i0.00
9 9.8i0'00 30:&0.00 9.8i0'00 10:&0.00 1:|:0.00 10:&0.00
10 9.8i0'00 30:5:0.00 9.8i0'00 10:|:0.00 1:|:0.00 10:|:0.00

max-pooling initialization: 0.00009, maxout networks with ¢ = 2: 0.00005, ReLU networks:
0.0001.

e CIFAR-100. Networks are trained for 1000 epochs. The learning rate is halved every 100
epochs. Learning rates: maxout networks with maxout initialization: 0.00008, maxout
networks with max-pooling initialization: 0.00009, maxout networks with ¢ = 2: 0.00005,

ReLU networks: 0.00009.

4.J.2 Ablation analysis

Table shows the results of the additional experiments that use SGD with Nesterov momentum
for more values of c and K = 5. From this, we see that the recommended value of ¢ from Section
4.4 closely matches the empirical optimum value of ¢. Note that here we have fixed the learning rate
across choices of c. More specifically, the following learning rates were used for the experiments
with different datasets. MNIST with fully-connected networks: 0.002; Iris: 0.01; MNIST with con-
volutional networks: 0.009; CIFAR-10: 0.004; CIFAR-100: 0.002; Fashion MNIST: 0.004. These are

the learning rates reported for the SGD with Nesterov momentum experiments in Section [4.].1.
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Table 4.11: Accuracy on the test set for maxout networks with maxout rank K = 5 that use batch
normalization trained using SGD with Nesterov momentum. Observe that the optimal value of cis
close to ¢ = 0.55555 which is suggested in Section [4.4.

VALUE OF ¢ CONVOLUTIONAL
MNIST CIFAR-10 CIFAR-100 Fashion MNIST
1076 11_35i000 10i0ﬂ0 1i000 10i000
10—5 1L35i000 10i000 1i000 10i000
1074 99.33i0.09 10i0.00 1i0.00 90.89i0'27
0.001 09.35+0-05 74 85+3:29 38 g5+446  gg 7g+l.2
0.01 09.32+005 75 7o+494 37 03+419  g() 514019
0.1 99.36+0-04  77.16+184  41.64F153  90.66+0-3
0.55555 99.4110:07 77 68+1.07 49 £1.51 90.89+0-23
1 09.39+0-04 79 261+0.76 43 g3+1.04 g gg+0.36
10 09.35+0-02 75 go+1.05 43 17028 g() 14+0.18
100 08.83*F007  66.23F169 3567088 85 .99+0-39
1000 97.69%0-31  50.97%2:28 91 95+0-59  g() 93+0.92
104 05.11+140 43 81*180 19 87129 76 (2144
10° 03.09+1:88 39 927%273 14 98+2.17 73 71+L55
106 87.63+186  40.27%092 14 91+09 71.71%3:3

4.J.3 Batch normalization

Table [4.11 reports test accuracy for maxout networks with batch normalization trained using SGD
with Nesterov momentum for various values of c. The implementation of the experiments is sim-
ilar to that described in Section [4.].1, except for the following differences: The networks use batch
normalization after each layer with activations; The width of the last fully connected layer is 100,
and all other layers of the convolutional networks are 8 times narrower; The learning rate is fixed
at 0.01 for all experiments. We use the default batch normalization parameters from TensorFlow.
Specifically, the momentum equals 0.99 and € = 0.001. We observe that our initialization strategy

is still beneficial when training with batch normalization.

4.J.4 Comparison of maxout and ReLU networks in terms of the number of param-

eters

We should point out that what is a fair comparison is not as straightforward as matching the pa-
rameter count. In particular, wider networks have the advantage of having a higher dimensional
representation. A fully connected network will not necessarily perform as well as a convolutional
network with the same number of parameters, and a deep and narrow network will not necessarily
perform as well as a wider and shallower network with the same number of parameters.
Nevertheless, to add more details to the results, we perform experiments using ReLU networks

that have as many parameters as maxout networks. See Tables and for results. We modify
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network architectures described in Section [¢.].1 for these experiments in the following way.

In the first experiment, we use fully connected ReLU networks 5 times wider than maxout net-
works. For convolutional networks, however, the resulting CNNs with ReLU activations would be
extremely wide, so we only made it 4 and 3 times wider depending on the depth of the network. In
our setup, a b times wider CNN network would need to be trained for longer than 24 hours, which
is difficult in our experiment environment. Maxout networks only required a much shorter time of
around 10 hours, which indicates possible benefits in some cases.

In the second experiment, we consider ReLU networks that are 5 times deeper than maxout net-

works. More specifically, fully-connected ReLU networks have the following architecture:
[25xfc64, 25xfc32, 25xfcl6, 25xfc8, out],
convolutional networks used for MNIST and Fashion MNIST datasets have the following layers:

[10x conv64, mp, 10xconv128, mp, 20x conv256, mp, 20xconv512, mp, 10x£c4096,
5x£c1000, out],

and architecture of the convolutional networks used for CIFAR-10 and CIFAR-100 datasets is

[10x conv64, mp, 10xconv128, mp, 20X conv256, mp, 20xconv512, mp, 20X conv512,
mp, 10x£c4096, 5x£c1000, out].

As expected, wider networks do better. On the other hand, deeper ReLU networks of the same width
do much worse than maxout networks.

We performed a grid search based on the performance of the model on the validation dataset
to determine the optimal learning rate for each ReLU network. Specifically, the following learning
rates were used. In the experiment with ReLU networks that are wider than maxout networks,
MNIST (fully-connected networks): 0.003, Iris: 0.009, MNIST (convolutional networks): 0.01,
Fashion MNIST: 0.008, CIFAR-10: 0.007, CIFAR-100: 0.008. In the experiment with ReLU networks
that are deeper than maxout networks, MNIST (fully-connected networks): 0.00002, Iris: 0.0006,
MNIST (convolutional networks): 0.00008, Fashion MNIST: 0.0008, CIFAR-10: 0.00008, CIFAR-100:
0.00008.

4.J.5 Comparison of maxout and ReLU networks with dropout

One of the motivations for introducing maxout units in Goodfellow et al} (2013) was to obtain better
model averaging by techniques such as dropout (Srivastava et all, 2o14)). The original paper (Good-
fellow et all, po13) conducted experiments comparing maxout and tanh. In Table l4.14, we show

the results of an experiment demonstrating that in terms of allowing for a better approximation
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Table 4.12: Accuracy on the test set for networks trained using SGD with Nesterov momentum. Fully-
connected ReLU networks are 5 times wider than fully-connected maxout networks. Convolutional
ReLU networks are 4 times wider than convolutional maxout networks for the MNIST and Fashion
MNIST datasets and 3 times wider for the CIFAR-10 and CIFAR-100 datasets. All networks have the
same number of layers.

MAXOUT RELU
Maxout init He init
VALUE OF ¢ 0.55555 2

FULLY-CONNECTED

MNIST 97.8%0.15  9g,11%0.:02
Iris 91.67%373  92,5%2.76
CONVOLUTIONAL
MNIST 99.59+0.04 g9 55+0.01
Fashion MNIST ~ 93.49%013 93 71+0-19
CIFAR-10 91.21%013  g1,24%0-21
CIFAR-100 65.39+0-39 661045

of model averaging based on dropout, maxout networks compare favorably against ReLU. This in-
dicates that maxout units can indeed be more suitable for training with dropout when properly ini-
tialized. We point out that several contemporary architectures often rely on dropout, such as trans-

formers (Vaswani et all, 2017).

4.J.6 Gradient values during training

The goal of the suggested initialization is to ensure that the training can start, while the gradients
might vary during training. Nevertheless, it is natural to also consider the gradient values during

raining for a fuller picture. Hence, we demonstrate the gradients during training in Figures }4.10
t g for a fuller picture. Hence, we d trate the gradients during t g in Figures l4.19

and jg.11.
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Table 4.13: Accuracy on the test set for networks trained using SGD with Nesterov momentum. ReLU
networks are 5 times deeper than maxout networks but have the same width.

MAXOUT RELU
Maxout init He init
VALUE OF ¢ 0.55555 2

FULLY-CONNECTED

MNIST 97.810:15 3 47+33.32
Iris 91.67+3-73  75.83%1L15
CONVOLUTIONAL
MNIST 99.59+0.04 g 4+0.05
Fashion MNIST 93.49+0-13 g3 95+0.11
CIFAR-10 91.21+0:13 73 o5+3.19
CIFAR-100 65.3910:39 17 g7+4.57

Table 4.14: Accuracy on the MNIST dataset of fully-connected networks trained with dropout with a
rate of 0.5 and of average predictions of several networks in which half of the weights were masked.
All results were averaged over 4 runs. Maxoutrank K = 5. Networks had 3 layers with 128, 64, and
32 neurons. Maxout networks were initialized using the initialization suggested in Section l4.4, and
ReLU networks using He initialization with Gaussian distribution (He et al), 2o15). ReLU networks
with dropout give results closer to a single model, whereas maxout networks with dropout give re-
sults closer to the average of a larger number of models. This indicates that maxout units are more
effective for obtaining better model averaging using dropout.

AVERAGE OF AVERAGE OF AVERAGE OF
DROPOUT 1 MODEL

2 MODELS 3 MODELS 4 MODELS
ReLU 97.04+0-14 97 09+0-17 97.73+0.08 97.87+0.04 07.94+0.08
Maxout 98.37+009 97 66+0-04 08.03+0-:05 98.15+0-08 98.19+0-06
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N 10 Value of ¢
- —— 10.0
2 — i [F—
x 107> 2.0
% 10-20 — 1.0
E — 0.55555
2 109-35 - 0.1
10 — 0.01
10—50
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Epoch

Figure 4.10: Expected value and interquartile range of the squared gradients (ON /OW i/, j)2 of a
fully-connected maxout network during training on the MNIST dataset. Weights are sampled from
N (0, ¢/fan-in), and biases are initialized to zero. The maxout rank K is 5. We compute the mean
and quartiles for 4 training runs using one random input that is fixed at the start of the training. The
gradient values increase at the beginning of the training and then remain stable during training for
all plotted initializations. Note that red and green lines corresponding to the values of ¢ = 0.55555
and ¢ = 1, respectively, overlap. Similarly, blue and orange lines corresponding to ¢ = 0.01 and
c = 0.1 overlap. Results for c = 2 and ¢ = 10 are not shown in the plot since their gradients
explode and go to NaN after the training starts.

Value of ¢
—— MNIST, FC
e e ——— — lris
—— MNIST, CNN
—— Fashion MNIST
—— CIFAR-10
CIFAR-100

0 200 400 600 800 1000
Epoch

Figure 4.11: Expected value and interquartile range of the squared gradients (ON /OW; | j)2 of max-
out networks during training. Weights are sampled from N (0, ¢/fan-in), where ¢ = 0.55555, and
biases are initialized to zero. The maxout rank K is 5. We use SGD with momentum and compute
the mean and quartiles for 4 training runs using one random input that is fixed at the start of the
training. All other experiment parameters are as described in Section l.Jd. The gradient values in-
crease at the beginning of the training and then remain stable during training for all datasets.
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